Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 03

View Issue TOC
Volume 24, No. 3
Pages 186 - 201

OpenAccess

The Ocean Carbon Cycle in the Western Arctic Ocean: Distributions and Air-Sea Fluxes of Carbon Dioxide

By Nicholas R. Bates , Wei-Jun Cai , and Jeremy T. Mathis  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The Arctic Ocean is a potentially important sink for atmospheric carbon dioxide (CO2) with a recent estimate suggesting that the region contributes from 5 to 14% of the global ocean’s net uptake of CO2. In the western Arctic Ocean, the focus of this paper, the Chukchi Sea is a strong ocean sink for CO2 that is partially compensated for by outgassing of CO2 from the East Siberian Sea shelf. The Arctic marine carbon cycle and exchange of CO2 between the ocean and atmosphere appear particularly sensitive to environmental changes, including sea ice loss, warming, changes in seasonal marine phytoplankton primary production, changes in ocean circulation and freshwater inputs, and even the impacts of ocean acidification. In the near term, further sea ice loss, increases in phytoplankton growth rates, and other environmental and physical changes in the Arctic are expected to cause a limited net increase in the uptake of CO2 by Arctic surface waters. Recent studies suggest that this enhanced uptake will be short lived, with surface waters rapidly warming and equilibrating with the atmosphere. Furthermore, release of large stores of carbon from the surrounding Arctic landmasses through rivers into the Arctic Ocean and further warming over the next century may alter the Arctic from a CO2 sink to a source over the next century.

Citation

Bates, N.R., W.-J. Cai, and J.T. Mathis. 2011. The ocean carbon cycle in the western Arctic Ocean: Distributions and air-sea fluxes of carbon dioxide. Oceanography 24(3):186–201, https://doi.org/10.5670/oceanog.2011.71.

References
    ACIA (Arctic Climate Impact Assessment). 2006. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1,046 pp.
  1. Alling, V., L. Sanchez-Garcia, D. Porcelli, S. Pugach, J.E. Vonk, B. van Dongen, C.M. Morth, L.G. Anderson, A. Sokolov, P. Andersson, and others. 2010. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas. Global Biogeochemical Cycles 24, GB4033, https://doi.org/10.1029/2010GB003834.
  2. Amon, R.M.W. 2004. The role of dissolved organic matter for the organic carbon cycle in the Arctic Ocean. Pp. 83–99 in The Organic Carbon Cycle in the Arctic Ocean. R.S. Stein and R.W. Macdonald, eds, Springer, New York.
  3. Anderson, L.G., and S. Kaltin. 2001. Carbon fluxes in the Arctic Ocean: Potential impact by climate change. Polar Research 20(2):225–232, https://doi.org/10.1111/j.1751-8369.2001.tb00060.x.
  4. Anderson, L.G., G. Bjork, O. Holby, E.P. Jones, G. Kattner, K.P. Koltermann, B. Liujeband, R. Lindegren, R. Rudels, and J. Swift. 1994. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 Expedition. Journal of Geophysical Research–Oceans 99(C2):3,273–3,283, https://doi.org/10.1029/93JC02977.
  5. Anderson, L.G., G. Björk, S. Jutterström, I. Pipko, N. Shakhova, I.P. Semiletov, and I. Wåhlström. 2011. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences Discussions 8(1):1,137–1,167, https://doi.org/10.5194/bgd-8-1137-2011.
  6. Anderson, L.G., D. Dyrssen, and E.P. Jones. 1990. An assessment of the transport of atmospheric CO2 into the Arctic Ocean. Journal of Geophysical Research 95(C2):1,703–1,711, https://doi.org/10.1029/JC095iC02p01703.
  7. Anderson, L.G., E. Falck, E.P. Jones, S. Jutterström, and J.H. Swift. 2004. Enhanced uptake of atmospheric carbon dioxide during freezing of seawater: A field study in Storfjorden, Svalbard. Journal of Geophysical Research 109(C6), C06004, https://doi.org/10.1029/2003JC002120.
  8. Anderson, L.G., E.P. Jones, and J.H. Swift. 2003. Export production in the central Arctic Ocean evaluated from phosphate deficits. Journal of Geophysical Research 108(C6), 3199, https://doi.org/10.1029/2001JC001057.
  9. Anderson, L.G., S. Jutterström, S.H. Hjalmarsson, I. Wahlstrom, and I.P. Semiletov. 2009. Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition. Geophysical Research Letters 36, L20601, https://doi.org/10.1029/2009GL040046.
  10. Anderson, L.G., K. Olsson, and M. Chierici. 1998a. A carbon budget for the Arctic Ocean. Global Biogeochemical Cycles 12(3):455–465, https://doi.org/10.1029/98GB01372.
  11. Anderson, L.G., K. Olsson, E.P. Jones, M. Chieric, and A. Fransson. 1998b. Anthropogenic carbon dioxide in the Arctic Ocean: Inventory and sinks. Journal of Geophysical Research 10(C12):27,707–27,716, https://doi.org/10.1029/98JC02586.
  12. Anderson, L.G., T. Tanhua, G. Brork, S.H. Hjalmarsson, E.P. Jones, S. Jutterström, B. Rudels, J.H. Swift, and I. Wahlstrom. 2010. Arctic ocean shelf–basin interaction: An active continental shelf CO2 pump and its impact on the degree of calcium carbonate solubility. Deep-Sea Research Part I 57:869–879, https://doi.org/10.1016/j.dsr.2010.03.012.
  13. Andreev, A.G., C.-T.A. Chen, and N.A. Sereda. 2010. The distribution of the carbonate parameters in the waters of Anadyr Bay of the Bering Sea and in the western part of the Chukchi Sea. Oceanology 50(1):39–50, https://doi.org/10.1134/S0001437010010054.
  14. Arrigo, K.R., G. van Dijken, and S. Pabi. 2008. The impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35, L19603, https://doi.org/10.1029/2008GL035028.
  15. Azetsu-Scott, K., A. Clarke, K. Falkner, J. Hamilton, E.P. Jones, C. Lee, B. Petrie, S. Prinsenberg, M. Starr, and P. Yeats. 2010. Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea. Journal of Geophysical Research 115, C11021, https://doi.org/10.1029/2009JC005917.
  16. Bates, N.R. 2006. Air-sea carbon dioxide fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. Journal of Geophysical Research 111, C10013, https://doi.org/10.1029/2005JC003083.
  17. Bates, N.R. 2007. Interannual variability of the oceanic carbon dioxide sink in the subtropical gyre of the North Atlantic Ocean over the last two decades. Journal of Geophysical Research 112, C09013, https://doi.org/10.1029/2006JC003759.
  18. Bates, N.R., and J.T. Mathis. 2009. The Arctic Ocean marine carbon cycle: Evaluation of air-sea carbon dioxide exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6(11):2,433–2,459, https://doi.org/10.5194/bg-6-2433-2009.
  19. Bates, N.R., M.H.P. Best, and D.A. Hansell. 2005a. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. Deep-Sea Research Part II 52:3,303–3,323, https://doi.org/10.1016/j.dsr2.2005.10.005.
  20. Bates, N.R., M.H.P. Best, and D.A. Hansell. 2006b. Suspended particulate organic matter (sPOM) data from Shelf-Basin Interactions (SBI) survey cruises in the Chukchi and Beaufort Seas during 2002. http://www.eol.ucar.edu/projects/sbi/all_data.shtml (accessed June 1, 2011).
  21. Bates, N.R., M.H.P. Best, and D.A. Hansell. 2006c. Suspended particulate organic matter (sPOM) data from Shelf-Basin Interactions (SBI) survey cruises in the Chukchi and Beaufort Seas during 2004. http://www.eol.ucar.edu/projects/sbi/all_data.shtml (accessed June 1, 2011).
  22. Bates, N.R., D.A. Hansell, S.B. Moran, and L.A. Codispoti. 2005b. Seasonal and spatial distributions of particulate organic matter (POM) in the Chukchi and Beaufort Seas. Deep-Sea Research Part II 52:3,324–3,343, https://doi.org/10.1016/j.dsr2.2005.10.003.
  23. Bates, N.R., J.T. Mathis, and L. Cooper. 2009. The effect of ocean acidification on biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean. Journal of Geophysical Research 114, C11007, https://doi.org/10.1029/2008JC004862.
  24. Bates, N.R., S.B. Moran, D.A. Hansell, and J.T. Mathis. 2006a. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss? Geophysical Research Letters 33, L23609, https://doi.org/10.1029/2006GL027028.
  25. Belicka, L.L., and H.R. Harvey. 2009. The sequestration of terrestrial organic carbon in Arctic Ocean sediments: A comparison of methods and implications for regional carbon budgets. Geochimica et Cosmochimica Acta 73:6,231–6,248, https://doi.org/10.1016/j.gca.2009.07.020.
  26. Belicka, L.L., R.W. Macdonald, and H.R. Harvey. 2009. Trace element and molecular markers of organic carbon dynamics along a shelf-basin continuum in sediments of the western Arctic Ocean. Marine Chemistry 115:72–85, https://doi.org/10.1016/j.marchem.2009.06.007.
  27. Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, and others. 2007. Observations: Oceanic climate change and sea level. Chapter 5 in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
  28. Buddemeier, R.W., J.A. Kleypas, and R.B. Aronson. 2004. Coral Reefs and Global Climate Change: Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems. Prepared for the Pew Center on Climate Change, 44 pp. Available online at: http://www.pewclimate.org/global-warming-in-depth/all_reports/coral_reefs (accessed June 1, 2011).
  29. Cai, W.-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Reviews of Marine Science 3:123–145, https://doi.org/10.1146/annurev-marine-120709-142723.
  30. Cai, W.-J., L. Chen, B. Chen, Z. Gao, S.H. Lee, J. Chen, D. Pierrot, K. Sullivan, Y. Wang, X. Hu, and others. 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:556, https://doi.org/10.1126/science.1189338.
  31. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425(6956):365, https://doi.org/10.1038/425365a.
  32. Carlson, C.A., H.W. Ducklow, and A.F. Michaels. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371(6496):405–408, https://doi.org/10.1038/371405a0.
  33. Carmack, E., and P. Wassmann. 2006. Food webs and physical-biological coupling on pan-Arctic shelves: Unifying concepts and comprehensive perspectives. Progress in Oceanography 71:446–477, https://doi.org/10.1016/j.pocean.2006.10.004.
  34. Cauwet, G., and I. Sidorov. 1996. The biogeochemistry of Lena River: Organic carbon and nutrients distribution. Marine Chemistry 53:211–227, https://doi.org/10.1016/0304-4203(95)00090-9.
  35. Chen, L.Q., and Z.Y. Gao. 2007. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas. Deep-Sea Research Part II 54:2,619–2,629, https://doi.org/10.1016/j.dsr2.2007.08.010.
  36. Chierici, M., and A. Fransson. 2009. Calcium carbonate saturation in the surface water of the Arctic Ocean: Undersaturation in freshwater influenced shelves. Biogeosciences 6:2,421–2,432, https://doi.org/10.5194/bg-6-2421-2009.
  37. Coachman, L.K., K. Aagaard, and R.B. Tripp. 1975. Bering Strait: The Regional Physical Oceanography. University of Washington Press, Seattle, WA, 169 pp.
  38. Codispoti, L., C. Flagg, and V. Kelly. 2005. Hydrographic conditions during the 2002 SBI process experiments. Deep-Sea Research Part II 52:3,199–3,226, https://doi.org/10.1016/j.dsr2.2005.10.007.
  39. Comiso, J.C., C.L. Parkinson, R. Gersten, and L. Stock. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35, L01703, https://doi.org/10.1029/2007GL031972.
  40. Cooper, L.W., R. Benner, J.R. McClelland, B.J. Peterson, R.M. Holmes, P.A. Raymond, D.A. Hansell, J.M. Grebmeier, and L.A. Codispoti. 2005. Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research 110, G02013, https://doi.org/10.1029/2005JG000031.
  41. Cooper, L.W., J.W. McClelland, R.M. Holmes, P.A. Raymond, J.J. Gibson, C.K. Guay, and B.J. Peterson. 2008. Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophysical Research Letters 35, L18606, https://doi.org/10.1029/2008GL035007.
  42. Cota, G.F., L.R. Pomeroy, W.G. Harrison, E.P. Jones, F. Peters, W.M. Sheldon, and T.R. Weingartner. 1996. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Marine Ecology Progress Series 135:247–258, https://doi.org/10.3354/meps135247.
  43. Davis, J., and R. Benner. 2005. Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin. Deep-Sea Research Part II 52:3,396–3,410, https://doi.org/10.1016/j.dsr2.2005.09.006.
  44. Delille, B., B. Jourdain, A.V. Borges, J.-L. Tison, and D. Delille. 2007. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnology and Oceanography 52:1,367–1,379, https://doi.org/10.4319/lo.2007.52.4.1367.
  45. Dickson, A.G. 1990. Standard potential of the reaction AgCl(s) + .5H2(g) = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics 22:113–127, https://doi.org/10.1016/0021-9614(90)90074-Z.
  46. Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part A. Oceanographic Research Papers 34:1,733–1,743, https://doi.org/10.1016/0198-0149(87)90021-5.
  47. Dickson, A.G., C.L. Sabine, and J.R. Christian, eds. 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3. Available online at: http://cdiac.ornl.gov/oceans/Handbook_2007.html (accessed June 1, 2011)
  48. Dmitrenko, I.A., S.A. Kirillov, and B.L. Tremblay. 2008. The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implications for climate change. Journal of Geophysical Research 113, C03007, https://doi.org/10.1029/2007JC004304.
  49. Eicken, H., J. Kolatschek, J. Freitag, F. Lindemann, H. Kassens, and I. Dmitrenko. 2000. A key source area and constraints for basin-scale sediment transport by Arctic sea ice. Geophysical Research Letters 27:1,919–1,922, https://doi.org/10.1029/1999GL011132.
  50. English, T.S. 1961. Some Biological Oceanographic Observations in the Central North Polar Sea, Drift Station Alpha, 1957–1958. Arctic Institute of North America Scientific Report 15, 79 pp.
  51. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414–432, https://doi.org/10.1093/icesjms/fsn048.
  52. Feder, H.M., S.C. Jewett, and A. Blanchard. 2005. Southeastern Chukchi Sea (Alaska) epibenthos. Polar Biology 28(5):402–421, https://doi.org/10.1007/s00300-004-0683-4.
  53. Forest, A., M. Sampei, H. Hattori, R. Makabe, H. Sasaki, M. Fukuchi, P. Wassmann, and L. Fortier. 2007. Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): Physical and biological forcing on shelf-basin exchanges. Journal of Marine Systems 68, https://doi.org/10.1016/j.jmarsys.2006.10.008.
  54. Fortier, L., and J.K. Cochran. 2008. Introduction to special section on annual cycles on the Arctic Ocean shelf. Journal of Geophysical Research 113, C03S00, https://doi.org/10.1029/2007JC004457.
  55. Fransson, A., M. Chierici, L.C. Anderson, I. Bussmann, G. Kattner, E.P. Jones, and J.H. Swift. 2001. The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: Implication for carbon fluxes. Continental Shelf Research 21(3):225–242, https://doi.org/10.1016/S0278-4343(00)00088-1.
  56. Fransson, A., M. Chierici, and Y. Nojiri. 2009. New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean. Continental Shelf Research 29:1,317–1,328 https://doi.org/10.1016/j.csr.2009.03.008.
  57. Gosink, T.A., J.G. Pearson, and J.J. Kelley. 1976. Gas movement through sea ice. Nature 263:41–42, https://doi.org/10.1038/263041a0.
  58. Gosselin, M., M. Levasseur, P.A. Wheeler, R.A. Horner, and B.C. Booth. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Research Part II 44:1,623–1,644, https://doi.org/10.1016/S0967-0645(97)00054-4.
  59. Gradinger, R. 2009. Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Research Part II 56:1,201–1,212, https://doi.org/10.1016/j.dsr2.2008.10.016.
  60. Grebmeier, J.M., N.R. Bates, and A. Devol. 2008. Continental margins of the Arctic Ocean and Bering Sea. Pp. 61–72 in North American Continental Margins: A Synthesis and Planning Workshop. B. Hales, W.-J. Cai, B.G. Mitchell, C.L. Sabine, and O. Schofield, eds, US Carbon Cycle Science Program, Washington, DC.
  61. Guo, L., and R.W. Macdonald. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochemical Cycles 20(2), GB2011, https://doi.org/10.1029/2005GB002593.
  62. Gustafsson, O., B.E. Van Dongen, J.E. Vonk, O.V. Dudarev, and I.P. Semiletov. 2011. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers. Biogeosciences Discussions 8:1,445–1,461, https://doi.org/10.5194/bgd-8-1445-2011.
  63. Hameedi, M.J. 1978. Aspects of water column primary productivity in the Chukchi Sea during summer. Marine Biology 48:37–46, https://doi.org/10.1007/BF00390529.
  64. Hansell, D.A., D. Kadko, and N.R. Bates. 2004. Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean. Science 304(5672):858–861, https://doi.org/10.1126/science.1096175.
  65. Hill, V., and G. Cota. 2005. Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002. Deep-Sea Research Part II 52:3,344–3,354, https://doi.org/10.1016/j.dsr2.2005.10.001.
  66. Holmes, R.M., J.W. McClelland, B.J. Peterson, S.E. Tank, E. Bulygina, T.I. Eglington, V.V. Gordeev, T.Y. Gurtovaya, P.A. Raymond, D.J. Repeta, and others. 2011. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts, https://doi.org/10.1007/s12237-011-9386-6.
  67. Holmes, R.M., J.W. McClelland, P.A. Raymond, B.B. Frazer, B.J. Peterson, and M. Stieglitz. 2008. Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophysical Research Letters 35, L03402, https://doi.org/10.1029/2007GL032837.
  68. Honjo, S., R.A. Krishfield, T.I. Eglinton, S.J. Manganini, J.N. Kemp, K. Doherty, J. Hwang, T.K. McKee, and T. Takizawa. 2010. Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Progress in Oceanography 85:137–170, https://doi.org/10.1016/j.pocean.2010.02.009.
  69. Jones, E.P., and L.G. Anderson. 1986. On the origin of chemical-properties of the Arctic-Ocean halocline. Journal of Geophysical Research 91:759–767, https://doi.org/10.1029/JC091iC09p10759.
  70. Jones, E.P., L.G. Anderson, S. Jutterström, L. Mintrop, and J.H. Swift. 2008. Pacific freshwater, river water and sea-ice meltwater across the Arctic Ocean basins: Results from the 2005 Beringia Expedition. Journal of Geophysical Research 113, C08012, https://doi.org/10.1029/2007JC004124.
  71. Jutterström, S., and L.G. Anderson. 2005. The saturation of calcite and aragonite in the Arctic Ocean. Marine Chemistry 94:101–110.
  72. Jutterström, S., and L.G. Anderson. 2010. Uptake of CO2 by the Arctic Ocean in a changing climate. Marine Chemistry 122:96–104, https://doi.org/10.1016/j.marchem.2010.07.002.
  73. Kaltin, S., and L.G. Anderson. 2005. Uptake of atmospheric carbon dioxide in Arctic shelf seas: Evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Marine Chemistry 94:67–79, https://doi.org/10.1016/j.marchem.2004.07.010.
  74. Kaltin, S., L.G. Anderson, K. Olsson, A. Fransson, and M. Chierici. 2002. Uptake of atmospheric carbon dioxide in the Barents Sea. Journal of Marine Systems 38:31–45, https://doi.org/10.1016/S0924-7963(02)00168-9.
  75. Kattner, G., J.M. Lobbes, H.P. Fitznar, R. Engbrodt, E.-M. Nothig, and R.J. Lara. 1999. Tracing dissolved organic substances and nutrients from the Lena River through Laptev Sea (Arctic). Marine Chemistry 65:25–39, https://doi.org/10.1016/S0304-4203(99)00008-0.
  76. Kelley, J.J. 1970. Carbon dioxide in the surface waters of the North Atlantic and the Barents and Kara Seas. Limnology and Oceanography 15:80–87.
  77. Lalande, C., A. Forest, D.G. Barber, T. Gratton, and L. Fortier. 2009. Variability in the annual cycle of vertical particulate organic carbon export on Arctic shelves: Contrasting the Laptev Sea, Northern Baffin Bay and the Beaufort Sea. Continental Shelf Research 29:2,157–2,165.
  78. Legendre, L., S.F. Ackley, G.S. Dieckmann, B. Gulliksen, R. Horner, T. Hoshiai, L.A. Melnikov, W.S. Reeburgh, M. Spindler, and C.W. Sullivan. 1992. Ecology of sea ice biota. 2. Global significance. Polar Biology 12:429–444.
  79. Lepore, K., S.B. Moran, J.M. Grebmeier, L.W. Cooper, C. Lalande, W. Maslowski, V. Hill, N.R. Bates, D.A. Hansell, J.T. Mathis, and R.P. Kelly. 2007. Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea. Journal of Geophysical Research 112, C10024, https://doi.org/10.1029/2006JC003555.
  80. Letscher, R.T., D.A. Hansell, and D. Kadko. 2011. Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean. Marine Chemistry 123:78–87, https://doi.org/10.1016/j.marchem.2010.10.002.
  81. Lobbes, J.M., H.P. Fitznar, and G. Kattner. 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta 64:2,973–2,983, https://doi.org/10.1016/S0016-7037(00)00409-9.
  82. Lundberg, L., and P.M. Haugen. 1996. A Nordic Seas–Arctic Ocean carbon budget from volume flows and inorganic carbon data. Global Biogeochemical Cycles 10:493–510, https://doi.org/10.1029/96GB00359.
  83. Macdonald, R.W., S.M. Solomon, R.E. Cranston, H.E. Welch, M.B. Yunker, and C. Gobeil. 1998. A sediment and organic carbon budget for the Canadian Beaufort shelf. Marine Geology 144:255–273, https://doi.org/10.1016/S0025-3227(97)00106-0.
  84. Macdonald, R.W., L.G. Anderson, J.P. Christensen, L.A. Miller, I.P. Semiletov, and R. Stein. 2010. Polar margins: The Arctic Ocean. Pp. 291–303 in Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. K.K. Liu, L. Atkinson, R. Quinones, and L. Talue-McManus, eds, Springer, New York, NY.
  85. Maslanik, J.A., S. Drobo, C. Fowler, W. Emery, and R. Barry. 2007. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters 34, L03711, https://doi.org/10.1029/2006GL028269.
  86. Mathis, J.T., D.A. Hansell, and N.R. Bates. 2005. Strong hydrographic controls on spatial and seasonal variability of dissolved organic carbon in the Chukchi Sea. Deep-Sea Research Part II 52:3,245–3,258, https://doi.org/10.1016/j.dsr2.2005.10.002.
  87. Mathis, J.T., D.A. Hansell, and N.R. Bates. 2009. Interannual variability of dissolved inorganic carbon distribution and net community production during the Western Arctic Shelf-Basin Interactions Project. Deep-Sea Research Part II 56:1,213–1,222, https://doi.org/10.1016/j.dsr2.2008.10.017.
  88. Mathis, J.T., D.A. Hansell, D. Kadko, N.R. Bates, and L.W. Cooper. 2007b. Determining net dissolved organic carbon production in the hydrographically complex western Arctic Ocean. Limnology and Oceanography 52:1,789–1,799, https://doi.org/10.4319/lo.2007.52.5.1789.
  89. Mathis, J.T., R.S. Pickart, D.A. Hansell, D. Kadko, and N.R. Bates. 2007a. Eddy transport of organic carbon and nutrients from the Chukchi Shelf: Impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research 112, C05011, https://doi.org/10.1029/2006JC003899.
  90. McGuire, A.D., L. Anderson, T.R. Christensen, S. Dallimore, L.D. Guo, D. Hayes, M. Heimann, R. Macdonald, and N. Roulet. 2009. Sensitivity of the carbon cycle in the Arctic to climate change (Review). Ecological Monographs 79:523–555, https://doi.org/10.1890/08-2025.1.
  91. McGuire, A.D., F.S. Chapin, J.E. Walsh, and C. Wirth. 2006. Integrated regional changes in Arctic climate feedbacks: Implications for the global climate system. Annual Reviews of Environment and Resources 31:61–91, https://doi.org/10.1146/annurev.energy.31.020105.100253.
  92. Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18:897–907, https://doi.org/10.4319/lo.1973.18.6.0897.
  93. Miller, L.A., T.N. Papakyriakou, R.E. Collins, J.W. Deming, J. Ehn, R.W. Macdonald, A. Mucci, O. Owens, M. Raudsepp, and N. Sutherland. 2011. Carbon dynamics in sea ice: A winter flux time series. Journal of Geophysical Research 116, C02028, https://doi.org/10.1029/2009JC006058.
  94. Moran, S.B., K.M. Ellis, and J.N. Smith. 1997. 234Th/238U disequilibrium in the central Arctic Ocean: Implications for particulate organic carbon export. Deep-Sea Research Part II 44:1,593–1,608, https://doi.org/10.1016/S0967-0645(97)00049-0.
  95. Moran, S.B., R.P. Kelly, K. Hagstrom, J.N. Smith, J.M. Grebmeier, L.W. Cooper, G.F. Cota, J.J. Walsh, N.R. Bates, D.A. Hansell, and others. 2005. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep-Sea Research Part II 52:3,427–3,451, https://doi.org/10.1016/j.dsr2.2005.09.011.
  96. Mucci, A., A. Forest, L. Fortier, M. Fukuchi, J. Grant, H. Hattori, P. Hill, G. Lintern, R. Makbe, C. Magen, and others. 2008. Organic and inorganic fluxes. Pp. 113–141 in On Thin Ice: A Synthesis of the Canadian Arctic Shelf Exchange Study (CASES). L. Fortier, D. Barber, and J. Michaud, eds, Aboriginal Issues Press.
  97. Murata, A., and T. Takizawa. 2003. Summertime carbon dioxide sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research 23:753–776, https://doi.org/10.1016/S0278-4343(03)00046-3.
  98. Nagurnyi, A.P. 2008. On the role of Arctic sea ice in seasonal variability of carbon dioxide concentration in Northern Latitudes. Russian Meteorology and Hydrology 33:43–47.
  99. Nakaoka, S., S. Aiki, T. Nakazawa, G. Hashida, S. Morimoto, T. Yamanouchi, and H. Yoshikawa-Inoue. 2006. Temporal and spatial variations of oceanic pCO2 and air-sea carbon dioxide flux in the Greenland Sea and the Barents Sea. Tellus 27:148–161, https://doi.org/10.1111/j.1600-0889.2006.00178.x.
  100. Nitishinsky, M., L.G. Anderson, and J.A. Holemann. 2007. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Continental Shelf Research 27:1,584–1,599, https://doi.org/10.1016/j.csr.2007.01.019.
  101. Omar, A.M., T. Johannessen, R.G.J. Bellerby, A. Olsen, L.G. Anderson, and C. Kivimäe. 2005. Sea ice and brine formation in Storfjorden: Implications for the Arctic wintertime air-sea CO2 flux. Pp. 177–187 in The Nordic Seas: An Integrated Perspective. H. Drange, T. Dokken, T. Furevik, R. Gerdes, and W. Berger, eds, Geophysical Monograph 158, American Geophysical Union, Washington, DC, 370 pp.
  102. Omar, A.M., T. Johannessen, A. Olsen, S. Kaltin, and F. Rey. 2007. Seasonal and interannual variability of the air-sea carbon dioxide flux in the Atlantic sector of the Barents Sea. Marine Chemistry 104:203–213, https://doi.org/10.1016/j.marchem.2006.11.002.
  103. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.
  104. Pabi, S., G.L. van Dijken, and K.R. Arrigo. 2008. Primary production in the Arctic Ocean, 1998–2006. Journal of Geophysical Research 113, C08005, https://doi.org/10.1029/2007JC004578.
  105. Papakyriakou, T., and L. Miller. 2011. Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago. Annals of Glaciology 52:215–224, https://doi.org/10.3189/172756411795931534.
  106. Perovich, D.K., B. Light, H. Eicken, K.F. Jones, K. Runciman, and S.V. Nghiem. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34, L19505, https://doi.org/10.1029/2007GL031480.
  107. Pierrot, D., C. Neill, K. Sullivan, R. Castle, R. Wanninkhof, H. Luger, T. Johannessen, A. Olsen, R.A. Feely, and C.E. Cosca. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research Part II 56:512–522, https://doi.org/10.1016/j.dsr2.2008.12.005.
  108. Pipko, I.I., I.P. Semiletov, P.Y. Tishchenko, S.P. Pugach, and J.P. Christensen. 2002. Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea. Progress in Oceanography 55(1-2):77–94, https://doi.org/10.1016/S0079-6611(02)00071-X.
  109. Pipko, I.I., I.P. Semiletov, P.Y. Tishchenko, S.P. Pugach, and N.I. Savel’eva. 2008. Variability of the carbonate system parameters in the coast-shelf zone of the East Siberian Sea during the autumn season. Oceanology 48:54–67, https://doi.org/10.1134/S0001437008010074.
  110. Pomeroy, L.R. 1997. Primary production in the Arctic Ocean estimated from dissolved oxygen. Journal of Marine Systems 10:1–8, https://doi.org/10.1016/S0924-7963(96)00059-0.
  111. Rachold, V., H. Eicken, V.V. Gordeev, M.N. Grigoriev, H.-W. Hubberten, A.P. Lisitzin, V.P. Shevchenko, and L. Schirmeister. 2004. Modern terrigenous organic carbon input to the Arctic Ocean. Pp. 33–69 in The Organic Carbon Cycle in the Arctic Ocean. R.S. Stein and R.W. Macdonald, eds, Springer, New York, NY.
  112. Raymond, P.A., J.W. McClelland, R.M. Holmes, A.V. Zhulidov, K. Mull, B.J. Peterson, R.G. Striegl, G.R. Aiken, and T.Y. Gurtovaya. 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochemical Cycles 21(4), https://doi.org/10.1029/2007GB002934.
  113. Roach, A.T., K. Aagaard, C.H. Pease, S.A. Salo, T.J. Weingartner, V. Pavlov, and M. Kulakov. 1995. Direct measurements of transport and water properties through Bering Strait. Journal of Geophysical Research 100:18,443–18,457, https://doi.org/10.1029/95JC01673.
  114. Robbins, L.L., M.E. Hansen, J.A. Kleypas, and S.C. Meylan. 2010. CO2calc: A user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geological Survey Open-File Report, 2010–1280, 17 pp. Available online at: http://pubs.usgs.gov/of/2010/1280 (accessed June 1, 2011).
  115. Rysgaard, S., R.N. Glud, M.K. Sejr, J. Bendtsen, and P.B. Christensen. 2007. Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas. Journal of Geophysical Research 112, C03016, https://doi.org/10.1029/2006JC003572.
  116. Sampei, M., H. Sasaki, R. Makube, A. Forest, H. Hattori, J.E. Tremblay, Y. Gratton, M. Fukuchi, and L. Fortier. 2011. Production and retention of biogenic matter in the southeast Beaufort Sea during 2003–2004: Insights from annual vertical particle fluxes of organic carbon and biogenic silica. Polar Biology 34:501–511, https://doi.org/10.1007/s00300-010-0904-y.
  117. Schlitzer, R. 2005. “Ocean Data View.” Available online at: http://odv.awi.de (accessed June 17, 2011).
  118. Semiletov, I.P. 1999. Aquatic sources of CO2 and CH4 in the Polar regions. Journal of Atmospheric Sciences 56:286–306, https://doi.org/10.1175/1520-0469(1999)056<0286:ASASOC>2.0.CO;2.
  119. Semiletov, I., A. Makshatas, S.-I. Akasofu, and E.L. Andreas. 2004. Atmospheric CO2 balance: The role of arctic sea ice. Geophysical Research Letters 31, L05121, https://doi.org/10.1029/2003GL017996.
  120. Semiletov, I.P., I.I. Pipko, I. Repina, and N.E. Shakhova. 2007. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interface in the Arctic Ocean. Journal of Marine Systems 66:204–226, https://doi.org/10.1016/j.jmarsys.2006.05.012.
  121. Serreze, M.C., and J.A. Francis. 2006. The Arctic amplification debate. Climate Change 76:241–264, https://doi.org/10.1007/s10584-005-9017-y.
  122. Stein, R., and R.W. Macdonald. 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer-Verlag, 349 pp, https://doi.org/10.1007/978-3-642-18912-8.
  123. Steinacher, M., F. Joos, T.L. Frolicher, G.-K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification of the Arctic projected with the NCAR global coupled carbon-cycle climate model. Biogeosciences 6:515–533, https://doi.org/10.5194/bg-6-515-2009.
  124. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, and others. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2 , and seasonal biological and temperature effects. Deep-Sea Research Part II 49:1,601–1,622, https://doi.org/10.1016/S0967-0645(02)00003-6.
  125. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, and others. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II 56:554–577, https://doi.org/10.1016/j.dsr2.2008.12.009.
  126. Tanhua, T., E.P. Jones, E. Jeansson, S. Jutterström, W.M. Smethie, D.W.R. Wallace, and L.G. Anderson. 2009. Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO2 and CFC-11. Journal of Geophysical Research 114, C01002, https://doi.org/10.1029/2008JC004868.
  127. Wallace, D.W.R., R.M. Moore, and E.P. Jones. 1987. Ventilation of the Arctic Ocean cold halocline: Rates of diapycnal and isopycnal transport, oxygen utilization and primary production inferred using chlorofluoromethane distributions. Deep-Sea Research Part A 34:1,957–1,979, https://doi.org/10.1016/0198-0149(87)90093-8.
  128. Wang, M.Y., and J.E. Overland. 2009. A sea-ice free summer Arctic within 30 years? Geophysical Research Letters 36, L07502, https://doi.org/10.1029/2009GL037820.
  129. Wang, W.Q., X.T. Yang, H.B. Huang, and L.Q. Chen. 2003. Investigation on distribution and fluxes of sea–air CO2 of the expedition areas in the Arctic Ocean. Science in China Series D—Earth Sciences 46:569–580, https://doi.org/10.1360/03yd9050.
  130. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97:7,373–7,382, https://doi.org/10.1029/92JC00188.
  131. Wassmann, P., E. Bauerfeind, M. Fortier, M. Fukucki, B. Hargrave, B. Moran, T. Noji, E.-M. Nöthig, K. Olli, R. Peinert, and others. 2004. Particulate organic carbon flux to the Arctic Ocean sea floor. Pp. 101–138 in The Organic Carbon Cycle in the Arctic Ocean. R.S. Stein and R.W. Macdonald, eds, Springer, New York, NY.
  132. Weingartner, T.J., D.J. Cavalieri, K. Aagaard, and Y. Sasaki. 1998. Circulation, dense water formation, and outflow on the northeast Chukchi shelf. Journal of Geophysical Research 103:7,647–7,661, https://doi.org/10.1029/98JC00374.
  133. Weingartner, T.J., S. Danielson, Y. Sasaki, V. Pavlov, and M. Kulakov. 1999. The Siberian Coastal Current: A wind- and buoyancy-forced Arctic coastal current. Journal of Geophysical Research 104(C12):29,697–29,713, https://doi.org/10.1029/1999JC900161.
  134. Wheeler, P.A., J.M. Gosselin, E. Sherr, D. Thibault, D.L. Kirchman, R. Benner, and T.E. Whitledge. 1996. Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699, https://doi.org/10.1038/380697a0.
  135. Woodgate, R.A., K. Aagaard, and T.J. Weingartner. 2005. Monthly temperature, salinity and transport variability of the Bering Strait through flow. Geophysical Research Letters 32, L04601, https://doi.org/10.1029/2004GL021880.
  136. Wu, P.L., R. Wood, and P. Stott. 2005. Human influence on increasing Arctic river discharges. Geophysical Research Letters 32(2), L02703, https://doi.org/10.1029/2004GL021570.
  137. Yamamoto-Kawai, M., F.A. McLaughlin, E.C. Carmack, S. Nishino, and K. Shimada. 2009. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 326:1,098–1,100, https://doi.org/10.1126/science.1174190.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.