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The Ocean Carbon Cycle 
in the Western Arctic Ocean

ABSTRA C T. The Arctic Ocean is a potentially important sink for 
atmospheric carbon dioxide (CO2) with a recent estimate suggesting 
that the region contributes from 5 to 14% of the global ocean’s net 
uptake of CO2. In the western Arctic Ocean, the focus of this paper, 
the Chukchi Sea is a strong ocean sink for CO2 that is partially 
compensated for by outgassing of CO2 from the East Siberian Sea shelf. 
The Arctic marine carbon cycle and exchange of CO2 between the 
ocean and atmosphere appear particularly sensitive to environmental 
changes, including sea ice loss, warming, changes in seasonal marine 
phytoplankton primary production, changes in ocean circulation and 
freshwater inputs, and even the impacts of ocean acidification. In the 
near term, further sea ice loss, increases in phytoplankton growth 
rates, and other environmental and physical changes in the Arctic are 
expected to cause a limited net increase in the uptake of CO2 by Arctic 
surface waters. Recent studies suggest that this enhanced uptake will be 
short lived, with surface waters rapidly warming and equilibrating with 
the atmosphere. Furthermore, release of large stores of carbon from the 
surrounding Arctic landmasses through rivers into the Arctic Ocean 
and further warming over the next century may alter the Arctic from a 
CO2 sink to a source over the next century. 
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Looking southward from high over the Arctic 
Ocean, NASA’s Aqua satellite reveals coastal 
phytoplankton blooms in the Chukchi Sea along 
northern Alaska (foreground) stretching into 
Bering Strait in September 2006. Credit: NASA
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INTRODUC TION
The Arctic plays an important and 
likely increasing role in the global 
climate system with complex and poorly 
understood interactions and feedbacks 
among sea ice, ocean, and atmosphere, 
the cryosphere-hydrological cycle, and 
ocean circulation, leading to significant 
impacts on the global balance of atmo-
spheric greenhouse gases such as CO2 
and methane. Over the last few decades, 
numerous studies have shown that there 
are significant warming (ACIA, 2005; 
Serreze and Francis, 2006), seasonal 
sea ice loss (e.g., Maslanik et al., 2007; 
Wang and Overland, 2009), and other 
physical and biological transforma-
tions in the terrestrial and marine 
realms of the Arctic (Wu et al., 2005; 
McGuire et al., 2006, 2009). The Arctic 
Ocean is also sensitive to atmosphere-
ocean-sea ice forcing and feedbacks 
and ecosystem transitions associated 
with warming temperatures and sea 
ice loss (e.g., Arrigo et al., 2008; Pabi 
et al., 2008). Because of these rapid 
environmental changes, the Arctic 
marine carbon cycle will likely enter 
a highly dynamic state in the coming 
decades, with large uncertainties in the 
exchange of atmosphere-ocean CO2 
(Anderson and Kaltin, 2001; Bates et al., 
2006a; Bates and Mathis, 2009; Cai et al., 
2010; Jutterström and Anderson, 2010) 

in response to sea ice loss and other 
climate-change-induced processes. 
Furthermore, the Arctic marine carbon 
cycle and marine ecosystems are also 
vulnerable to ocean acidification that 
results from the uptake of anthropogenic 
CO2 from the atmosphere (Orr et al., 
2005; Steinacher et al., 2009; Bates et al., 
2009; Yamamoto-Kawai et al., 2009). 

In this article, we review the present 

state of knowledge about the Arctic 
marine carbon cycle, exchanges of 
CO2 between the atmosphere and the 
ocean, and the potential physical and 
biological processes that influence 
CO2 sources and sinks in the Pacific-
Ocean-influenced Arctic. To illustrate 
their potential controls on air-sea CO2 
flux in a changing environment, this 
review also includes a brief treatment of 
marine ecosystems and organic carbon 
cycling in the western Arctic; more 
comprehensive reviews may be found 
elsewhere, e.g., Stein and Macdonald, 
(2004) and Macdonald et al., (2010). Our 
geographic scope is focused primarily 
on the western Arctic Ocean shelves 
(e.g., Chukchi, Beaufort, and East 
Siberian Seas) and the adjacent Canada 
Basin, which are influenced by the 
inflow of Pacific Ocean waters through 
Bering Strait (Figure 1). We discuss 
marine carbon cycle data collected in 
the early 2000s during the Shelf-Basin 
Interactions (SBI) project as well as more 
recent data collected during the China 
National Arctic Research Expedition 
(CHINARE), Russian-American Long-
term Census of the Arctic (RUSALCA), 
and National Aeronautics and Space 
Administration (NASA) Impacts of 
Climate change on the Eco-Systems 
and Chemistry of the Arctic Pacific 
Environment (ICESCAPE) projects.

PHYSICAL SET TING OF THE 
WESTERN ARC TIC OCEAN
The relatively small Arctic Ocean, 
containing 2.6% of the world’s ocean 
area but < 1% of its volume, is almost 
completely surrounded by landmasses. 
It is disproportionately affected by 
terrestrial fluxes because it receives 
almost 10% of total global river runoff 

annually from an extensive system 
of rivers that drain the watersheds of 
Siberia and northern North America 
(McGuire et al., 2006; Cooper et al., 
2008). These landmasses contain large 
stores of freshwater (mostly glacial ice 
and permafrost) and terrestrial carbon, 
which, combined with the presence of 
sea ice in the Arctic Ocean, profoundly 
influence the hydrological cycle, climate, 
and biogeochemical dynamics of carbon 
in the Arctic region. 

In wintertime, the Arctic Ocean is 
almost completely covered by sea ice 
(except for minor areas of open water 
associated with polynyas and flaw leads). 
Physical transformations and seasonal 
sea ice cover together play a major role 
in controlling shelf water-mass proper-
ties through vertical homogenization 
of the water column by such physical 
processes as ventilation, brine rejection, 
and convective mixing. In summertime, 
seasonal atmospheric warming and the 
inflow of Pacific and Atlantic Ocean 
waters, combined with local warming 
and sea ice melt, leave the Arctic shelves 
sea ice-free for a relatively brief period. 
However, the presence of multiyear 
ice in the central basin and thinner 
seasonal sea ice (1 to 2 m) across the 
Arctic shelves has declined dramati-
cally since the 1990s and in particular 
since 2007 (Comiso et al., 2008). Thus, 
sea ice loss reinforces surface warming 
due to reduced surface reflectivity and 
increased heat absorption (Perovich 
et al., 2007), which in turn impact Arctic 
Ocean chemistry and biology.

The expansive coastal seas of the 
Arctic Ocean (e.g., Barents, Laptev, Kara, 
East Siberian, Chukchi, and Beaufort 
Seas) comprise approximately 53% of 
its total area (Macdonald et al., 2010) 
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and completely surround a deep central 
basin (Eurasian and Canada Basins; 
Figure 1). The Arctic Ocean has several 
important gateways that allow exchanges 

of seawater with the Pacific (through 
Bering Strait) and Atlantic (through the 
Canadian Archipelago, Fram Strait, and 
Barents Sea; Figure 1). In the western 
Arctic, the wide and shallow Chukchi 
Sea occupies a particularly extensive 
portion of the Arctic shelf system. 
Relatively warm and nutrient-rich 
Pacific Ocean waters enter the Chukchi 
Sea, flowing northward through Bering 
Strait from the Bering Sea (Coachman 
et al., 1975; Roach et al., 1995; Woodgate 
et al., 2005). The physics and biogeo-
chemistry of the Chukchi Sea is highly 
influenced by this inflow, and its shelf 

can be characterized as an “inflow” 
shelf (Carmack and Wassmann, 2006; 
Bates and Mathis, 2009). In contrast 
to the Chukchi Sea, the East Siberian 
Sea and Beaufort Sea shelves are 
more influenced by freshwater inputs, 
exchanges with adjoining shelves, and 
internal processes (i.e., “interior shelves”; 
Figure 1). For example, there is a general 
flow from the Laptev Sea across the 
East Siberian Sea shelf, and subsequent 
export of water offshelf into the central 
basin or through Long Strait into the 
Chukchi Sea via the Siberian Coastal 
Current (e.g., Weingartner et al., 1998; 
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Figure 1. (left panel) Schematic of the Arctic Ocean, central basin (Canada and Eurasian Basins) and Arctic continental shelves (with 
approximate boundaries for each Arctic Ocean coastal sea), major rivers draining into the region (Macdonald et al., 2009), and adjoining 
seas that have significant exchanges of water with the Arctic. (right panel) The three generic types of continental shelves are shown 
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Nitishinsky et al., 2007). The Beaufort 
Sea exhibits a general flow eastward 
along the shelf from the Chukchi Sea 
and considerable shelf-basin exchanges 
(e.g., Mathis et al., 2007a). On both 
of these “interior shelves,” freshwater 
inputs (from the Mackenzie River into 
the Beaufort Sea and the Kolyma River 
into the East Siberian Sea), seasonal 
sea ice melt and formation, and brine 
rejection in coastal polynyas are impor-
tant processes (e.g., Dmitrenko et al., 
2008) with high rates of sea ice produc-
tion in the East Siberian Sea as well 
as the Laptev Sea (Eicken et al., 2000) 
compared to other Arctic Ocean shelves. 

In the central basin of the western 
Arctic Ocean, surface waters of the 
Canada Basin or Beaufort Gyre are 
influenced by shelf-basin exchanges of 
water while subsurface waters are rela-
tively isolated from surface waters due 
to sharp density stratification with depth 
(e.g., Jones and Anderson, 1986; Wallace 
et al., 1987). Thus, environmental change 
due to warming, sea ice loss, and other 
processes mostly affects surface waters 
rather than the deep, isolated subsurface 
waters in the central basin.

THE ARC TIC MARINE 
CARBON CYCLE
Seawater connections with subarctic 
oceans and seas, land-to-ocean inputs, 
and atmosphere-ocean exchanges 
strongly influence the marine carbon 
cycle in the western Arctic Ocean. The 
upper waters (0–100 m depth) of the 
Arctic Ocean contain approximately 
2 Pg of organic carbon (Pg = 1015 g). 
This reservoir is in the form of living 
organisms and detritus, and includes 
suspended particulate organic 
carbon (POC) and dissolved organic 
carbon (DOC). In addition, there is 

approximately 25 Pg of dissolved inor-
ganic carbon (DIC) in the forms of 
bicarbonate (HCO3

–), carbonate (CO3
2–), 

and carbon dioxide (CO2). 
Inflow of Pacific Ocean water 

through Bering Strait into the 
Chukchi Sea constitutes an input of 
~ 0.8–1.0 Pg C yr–1 of inorganic carbon 
into the Arctic Ocean (Bates and Mathis, 
2009), with outflow from the western 
Arctic primarily through the Canadian 
Archipelago. In comparison, rates of 
primary production (or new and export 
production) have been estimated at 
~ 135 Tg C yr–1 (Tg = 1012 g) in the 
entire Arctic Ocean, though there are 
large uncertainties in these estimates 
(Macdonald et al., 2010). The Arctic 
landmasses contain even larger stores 
of carbon compared to the marine envi-
ronment, and there are significant river 
inputs of organic carbon to the Arctic 
shelves (e.g., Lobbes et al., 2000; Amon, 
2004; Rachold et al., 2004; Guo and 
Macdonald, 2006; Raymond et al., 2007; 
Holmes et al., 2011). Pan-Arctic river 
inputs of carbon have been estimated 
by McGuire et al. (2009) at 33 Tg C yr–1 
of DOC and 43.2 Tg C yr–1 DIC, which 
are 7.1% and 10.6% of their respective 
total global river fluxes (Cai, 2011). 
River inputs of POC and coastal erosion 
of terrestrial carbon (containing both 
refractory and labile organic carbon) 
have been estimated at ~ 12 Tg C yr–1 
(e.g., Rachold et al., 2004; Macdonald 
et al., 2010), at least for the present. 
Rivers thus contribute disproportionately 
large amounts of freshwater and carbon 
to the Arctic Ocean compared to river 
contributions in other ocean basins.

Compared to many other open-ocean 
and coastal environments, relatively 
few studies of the marine carbon cycle 
have been conducted in the Arctic. The 

harsh polar climate and difficult logis-
tical support have limited most studies 
to opportunistic icebreaker surveys 
conducted on the Arctic Ocean shelves 
during the summertime sea ice retreat. 
Even with transpolar surveys across the 
deep basin (e.g., Arctic Ocean Section 
of 1994 [Jutterström and Anderson, 
2005; Jones et al., 2008; Tanhua et al., 
2009; Jutterström and Anderson, 2010]) 
and shelf projects such as the Shelf-
Basin Interactions (SBI II) program 
(Grebmeier et al., 2008) and Canadian 
Arctic Shelf Exchange Study (CASES; 
Mucci et al., 2008; Fortier and Cochran, 
2008), spring and summer observations 
of the Arctic Ocean marine carbon cycle 
are highly limited, and observations 
are virtually absent during winter sea 
ice cover. Thus, there are considerable 
uncertainties about physical and biolog-
ical controls on the marine carbon cycle, 
natural and human perturbed seasonal 
and interannual variability, and CO2 

sinks and sources in the Arctic Ocean.

MARINE ECOSYSTEMS AND 
ORGANIC CARBON OF THE 
WESTERN ARC TIC
In the western Arctic, the different 
physical setting of each shelf strongly 
influences its biology. The inflow of 
nutrient-rich seawater from the Pacific 
Ocean into the Chukchi Sea (Codispoti 
et al., 2005), coupled with abundant light 
and the seasonal retreat and melting of 
sea ice, supports a brief, but intensive, 
period of marine phytoplankton photo-
synthesis and growth compared to other 
Arctic Ocean shelves where nutrients 
are limited (Cota et al., 1996; Hill and 
Cota, 2005). As the foundation for 
supporting the pelagic/benthic food web, 
rates of phytoplankton primary produc-
tion on the Chukchi Sea shelf can be 
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≥ 300 g C m2 yr–1 or 0.3–2.8 g C m2 d–1 
(e.g., Hameedi, 1978; Cota et al., 1996; 
Gosselin et al., 1997; Hill and Cota, 
2005; Bates et al., 2005a; Mathis et al., 
2009; Macdonald et al., 2010). Sea 
ice algal communities also contribute 
substantively to early season primary 
production (e.g., Legendre et al., 1992; 
Gosselin et al., 1997), with springtime 
production rates in the Chukchi Sea esti-
mated at ~ 1–2 g C m2 d–1 (Gradinger, 
2009). Intense seasonal growth of 
marine phytoplankton supports a large 
zooplankton (e.g., shrimp, copepods) 
biomass that in turn supports diverse 
open-water and seafloor ecosystems 
(Feder et al., 2005; Grebmeier et al., 
2008). Both pelagic and benthic ecosys-
tems on the Chukchi Sea shelf support 
marine mammal (e.g., gray whale, 
walrus, polar bear), seabird, and human 

populations in the region. 
In the Chukchi Sea, the brief period 

of high rates of marine phytoplankton 
primary production results in the 
formation of high concentrations of 
suspended POC (sPOC; Bates et al., 
2005b) and export of organic carbon 
to the subsurface and benthos (Moran 
et al., 2005; Lepore et al., 2007). 
During the SBI project in the early 
2000s, high concentrations of sPOC 
were observed (up to 2000 mg C L–1; 
average of ~ 200–300 mg C L–1) across 
the shelf (Figure 2), with consider-
able export of sPOC off the shelf into 
the Canada Basin (Bates et al., 2005b; 
~ 2.3–3.5 Tg C yr–1 assuming 0.8 Sv 
transport during 100 days of active POC 
production), and relatively high rates 
of vertical export of organic carbon to 
shelf, slope, and basin sediments (Moran 

et al., 2005; Lepore et al., 2007; Belicka 
and Harvey, 2009). In contrast, little 
seasonal accumulation of DOC due to 
phytoplankton primary production has 
been observed (e.g., Davis and Benner, 
2005; Mathis et al., 2007b) from spring-
time to summertime during sea ice 
retreat (Figure 3). This marine ecosystem 
appears dominated by large-sized 
phytoplankton (e.g., diatoms; Grebmeier 
et al., 2008) that produce a relatively 
large-size class of organic matter (i.e., as 
POC rather than DOC). In contrast, in 
other marine ecosystems dominated by 
small phytoplankton (i.e., picoplankton) 
such as the subtropical North Atlantic 
Ocean, a much larger fraction of DOC is 
produced seasonally compared to POC 
(e.g., Carlson et al., 1994). 

Elsewhere in the western Arctic, 
coastal waters of the East Siberian and 

Figure 2. Distributions of suspended 
particulate organic carbon (POC) in the 
Chukchi Sea collected during the 2002 and 
2004 Shelf-Basin Interactions (SBI) project 
in the western Arctic (Bates et al., 2005b, 
2006b,c, http://www.eol.ucar.edu/projects/
sbi/all_data.shtml). In the left panel, CTD/
hydrocast stations are shown with different 
seas denoted: CS = Chukchi Sea. ESS = East 
Siberian Sea. BS = Beaufort Sea. CB = Canada 
Basin. In the right panel, POC data include 
two sea ice-covered cruises in spring and two 
sea ice-free cruises conducted in summer-
time, including: spring 2002 (blue symbols), 
summer 2002 (green symbols), spring 2004 
(yellow symbols), and summer 2004 (red 
symbols). The data are plotted using Ocean 
Data View (Schlitzer, 2005).

http://www.eol.ucar.edu/projects/sbi/all_data.shtml
http://www.eol.ucar.edu/projects/sbi/all_data.shtml
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Beaufort Sea have much lower rates of 
marine phytoplankton photosynthesis 
and growth due primarily to reduced 
physical supply of nutrients, briefer 
periods of sea ice retreat, and more 
turbid surface waters, which reduces 
solar penetration (Carmack and 
Wassmann, 2006; Macdonald et al., 
2010). Rates of summertime phyto-
plankton primary production (compared 
to other Arctic shelves) in the euphotic 
zone of the East Siberian Sea and 
Beaufort Sea shelves have been estimated 
at ~ 6–12 g C m–2 yr–1 (Macdonald et al., 
2010; Anderson et al., 2011), which 
is low compared to the Chukchi Sea 
and the Barents Sea shelf, for example. 
Notwithstanding these lower rates of 
primary production, the Siberian and 
Beaufort Sea shelves have a dynamic 
carbon cycle (e.g., Macdonald et al., 

1998), with significant marine produc-
tion of organic matter and proportion-
ately greater (compared to the Chukchi 
Sea) input of terrestrially derived 
organic matter (e.g., Lobbes et al., 2000; 
Rachold et al., 2004; Raymond et al., 
2007; Gustafsson et al., 2011). Terrestrial 
organic carbon constitutes up to 44% of 
vertical POC export on the Beaufort Sea 
shelf (e.g., Belicka et al., 2009; Belicka 
and Harvey, 2009; Sampei et al., 2011), 
with significant shelf-basin transport of 
organic matter (e.g., 1.6–5.9 g C m–2 d–1; 
Lalande et al., 2009; Forest et al., 2007). 

In the central basins of the Arctic, 
surface waters are mostly covered by sea 
ice and have very low nutrient concen-
trations. As a result, surface waters 
of the Canada Basin have very low 
rates of marine phytoplankton growth 
(e.g., English, 1961; Wheeler et al., 

1996; Gosselin et al., 1997; Moran et al., 
1997; Pomeroy, 1997; Anderson et al., 
2003) and relatively low vertical export 
of organic matter to the deep seafloor 
(e.g., Moran et al., 1997; Wassmann 
et al., 2004; Honjo et al., 2010). 

Differences in the availability of nutri-
ents, productivity, and sources of organic 
carbon briefly discussed above provide 
critical links to explain the observed 
contrasting distribution of surface CO2 
in various subregions of the western 
Arctic Ocean (see below).

INORGANIC CARBON IN THE 
WESTERN ARC TIC OCEAN
The complete seawater inorganic carbon 
system (i.e., CO2, HCO3

–, CO3
2–, H+, and 

calcium carbonate [CaCO3] mineral 
saturation states, Ω) can be calculated 
from measurements of two carbonate 

Figure 3. Surface distributions of dissolved organic carbon (DOC; µmol L–1) across the western Arctic Ocean collected during the 2002 and 
2004 SBI project in the western Arctic (Mathis et al., 2005; D.A. Hansell and N.R. Bates data available at http://www.eol.ucar.edu/projects/
sbi/all_data.shtml), and during the 2009 RUSALCA project (recent work of author Bates and D.A. Hansell). In the left panel, CTD/hydrocast 
stations are shown with different seas denoted: CS = Chukchi Sea. ESS = East Siberian Sea. BS = Beaufort Sea. CB = Canada Basin. In the right 
panel, surface DOC is plotted from two sea ice-covered cruises in spring (SBI) and three sea ice-free cruises conducted in summer (two SBI 
and one Russian-American Long-term Census of the Arctic [RUSALCA] cruise). SBI and RUSALCA data sets are differentiated on the figure. 
The data are plotted using Ocean Data View (Schlitzer, 2005).

http://www.eol.ucar.edu/projects/sbi/all_data.shtml
http://www.eol.ucar.edu/projects/sbi/all_data.shtml
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parameters such as dissolved inorganic 
carbon (DIC), total alkalinity (TA), 
partial pressure (pCO2) or fugacity 
of carbon dioxide (f CO2), and pH 
(Dickson at al., 2007). 

There are numerous physical and 
biological controls on the marine carbon 
cycle with complex interactions between 
them. Arguably, the most important 
processes include seasonal cooling and 
warming of surface waters, exchange of 
carbon with other basins and shelves, 
phytoplankton primary production, 
air-sea transfer of CO2, sea ice processes, 
and inputs of freshwater and terrestrial 
carbon (Bates and Mathis, 2009). At 
the air-sea interface, sea ice cover has 
generally been thought to be a barrier 
to gas exchange, although there may be 
minor exchanges in leads and diffusion 
through the ice (e.g., Gosink et al., 1976; 
Semiletov et al., 2004; Delille et al., 2007; 
Nagurnyi, 2008). Recent studies, however, 

suggest that the exchange of CO2 through 
sea ice is much greater than previously 
thought, with significant release and 
uptake of CO2 depending on season and 
sea ice condition (Rysgaard et al., 2007; 
Miller et al., 2011; Papakyriakou and 
Miller, 2011). Within the water column, 
carbon export via brine rejection during 
sea ice formation, shelf-basin exchanges 
of carbon, vertical diffusion, entrainment 
and detrainment through mixing, vertical 
export of organic carbon, and remineral-
ization of organic matter to CO2 in shelf 
and subsurface waters and sediments are 
also important processes.

In early studies of the Chukchi Sea, 
Semiletov (1999) observed that seawater 
pCO2 (~ 200–350 µatm) values were 
lower than those in the atmosphere 
(~ 365–380 µatm at the time of obser-
vation) during the sea ice-free period. 
Since then, other studies have observed 
low seawater pCO2 conditions on the 

Chukchi Sea shelf during summertime 
(~ 150–350 µatm; Pipko et al., 2002; 
Murata and Takizawa, 2003; Bates 
et al., 2005a, 2006a; Bates, 2006; Chen 
and Gao, 2007; Fransson et al., 2009; 
Andreev et al., 2010). More recently, 
similarly low values for seawater 
pCO2 were observed during the 2008 
CHINARE (Figure 4), 2009 RUSALCA 
(Figure 5), and 2010 ICESCAPES 
projects (Figure 6). In 2010, similar to 
other years, extremely low summertime 
pCO2 conditions (< 100 µatm) were 
observed under sea ice in surface waters 
of the Northwest Chukchi Sea close to 
the Canada Basin (Figure 6) similar to 
previous observations north of Wrangel 
Island (Fransson et al., 2009).

On the Chukchi Sea shelf, large 
drawdowns of surface-water DIC have 
also been observed during summertime 
open-water conditions (Bates et al., 
2005b; Bates, 2006; Cai et al., 2010), 

Figure 4. Surface distributions of seawater partial pressure of CO2 (pCO2 in µatm) during the summer 2008 China National Arctic Research 
Expedition (CHINARE; Cai et al., 2010). Data were collected using a NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) 
underway CO2 system deployed on the icebreaker Xuelong. The pCO2 system is described in detail by Pierrot et al. (2009). The summer 2008 
CHINARE pCO2 data were collected as a result of collaboration among Rik Wanninkhof of NOAA-AOML, USA; Liqi Chen of the Third Institute of 
Oceanography, State Ocean Administration, China; and author Wei-Jun Cai. The data are plotted using Ocean Data View (Schlitzer, 2005).



Oceanography  |  September 2011 193

similar to the seasonal changes observed 
in the Barents Sea, for example (Omar 
et al., 2003, 2007; Nakaoka et al., 2006). 
The seasonal changes in DIC have 
been largely attributed to high rates of 
summertime phytoplankton primary 
production or net community produc-
tion, especially in the vicinity of Barrow 
Canyon at the northern edge of the 
Chukchi Sea shelf (Bates et al., 2005a; 
Hill and Cota, 2005; Mathis et al., 
2007b). In summary, seasonal changes in 
surface pCO2 on the Chukchi Sea shelf 
have been largely attributed to cooling 
of surface waters during the northward 
transit of waters across the Chukchi Sea 
shelf (Murata and Takizawa, 2003) and 
high rates of summertime phytoplankton 
primary production that act to decrease 
seawater DIC and pCO2 (Bates, 2006). 
These processes produce a dynamic 
shelf-to-basin carbon pump (Bates, 2006; 
Anderson et al., 2010). The seasonal 

rebound of seawater pCO2 and DIC 
during wintertime likely results from a 
continued uptake of CO2 through gas 
exchange during sea ice formation and 
brine rejection (Anderson et al., 2004; 
Omar et al., 2005), continued transport 
of Pacific Ocean waters into the Chukchi 
Sea through Bering Strait, and vertical 
entrainment by mixing with CO2-rich 
subsurface waters.

In the East Siberian and Beaufort 
Seas, surface water pCO2 conditions 
appear highly variable during the sea 
ice-free period. In the East Siberian Sea 
shelf (~ 300–500 µatm), surface waters 
close to or above atmospheric values 
have been reported (Semiletov et al., 
1999, 2007; Pipko et al., 2008), with 
much higher values near the outflow 
of the Kolyma River (~ 500 µatm) 
that drains into the East Siberian Sea 
shelf (Semiletov et al., 1999, 2007). 
Furthermore, very high values (~ 500 to 

~ 1500 µatm) have been observed in 
bottom waters of the inner shelf and 
also in the nearshore bays (e.g., Tiksi 
Bay) and estuaries of the East Siberian 
Sea (Semiletov et al., 1999, 2007). We 
have also observed seawater pCO2 
values close to equilibrium with the 
atmosphere in the East Siberian Sea 
(Figure 5). The high seawater pCO2 
values can be attributed primarily to 
the remineralization of organic matter 
introduced from the Siberian Rivers 
(e.g., Anderson et al., 1990; Cauwet and 
Sidorov, 1996; Kattner et al., 1999), given 
that there are low rates of summertime 
phytoplankton primary production 
(~ 6–12 g C m–2 yr–1; Macdonald et al., 
2010). In the western Chukchi Sea near 
Long Strait, summertime seawater pCO2 
conditions were observed to be close 
to equilibrium with the atmosphere 
(Fransson et al., 2009; also Figure 5), 
presumably reflecting outflow of 

Figure 5. Surface distributions of seawater partial pressure of CO2 (pCO2 in µatm) calculated from dissolved inorganic carbon (DIC) and 
total alkalinity (TA) data collected during the summer of 2009 as part of the RUSALCA project (recent work of author Bates). Samples were 
collected from CTD/hydrocast stations occupied by the icebreaker Professor Khromov. DIC and TA sample analysis is described elsewhere in 
Bates (2007). Seawater pCO2 was calculated using CO2calc (Robbins et al., 2010) with dissociation constants of Mehrbach et al. (1973) as refit 
by Dickson and Millero (1987) and KSO4 of Dickson (1990). The data are plotted using Ocean Data View (Schlitzer, 2005).
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higher pCO2 surface waters from the 
East Siberian Sea with the intermittent 
Siberian Coastal Current (Weingartner 
et al., 1999). In the Beaufort Sea, 
seawater pCO2 conditions appear to be 
highly variable (~ 150–350 µatm) in the 
western parts of the shelf (Murata and 
Takizawa, 2003; Bates, 2006), with low 
values (< 100 µatm) observed in areas 
with high proportions of freshwater 
(10–20%) and sea ice melt (10–25%) 
(e.g., Cooper et al., 2005; Bates, 2006). 
In the eastern Beaufort Sea shelf, 
summertime surface seawater pCO2 
values were generally low (Mucci et al., 
2008) or close to equilibrium with 
the atmosphere, particularly in the 
vicinity of the Banks Island polynya 
(Fransson et al., 2009).

In the central basin, which has been 
poorly sampled for the marine carbon 
cycle, there is an emerging picture of 

mixed surface seawater pCO2 condi-
tions. In early studies, such as the Arctic 
Ocean Section (AOS) expedition in 
1994, surface waters under sea ice had 
seawater pCO2 values of ~ 300–330 µatm 
(i.e., much lower than the atmosphere; 
Jutterström and Anderson, 2010). 
Several repeated sections across the 
central basin also have shown similar 
results (Jutterström and Anderson, 
2010). In the early 2000s, low seawater 
pCO2 values of ~ 240–280 µatm were 
observed in the Canada Basin off the 
Chukchi Sea shelf (Bates, 2006; Bates 
et al., 2006a), and there were even 
lower surface seawater pCO2 values of 
~ 150–250 µatm in the Makarov Basin of 
the Canada Basin (Fransson et al., 2009). 
However, more recently, Yamamoto-
Kawai et al. (2009) showed that some 
surface areas of the Canada Basin had 
seawater pCO2 conditions close to 

equilibrium with the atmosphere in areas 
with significant contributions from sea 
ice melt. After the major summertime 
sea ice retreat observed in 2007, based 
on high-resolution underway pCO2 
measurements, Cai et al., (2010) showed 
that ice-free surface areas of the Canada 
Basin (mostly the southern part of the 
basin) had seawater pCO2 conditions 
close to equilibrium with the atmo-
sphere, reflecting uptake of CO2 from the 
atmosphere and warming during expo-
sure of surface waters as well as strong 
vertical stratification and low biological 
production. However, areas with heavy 
ice cover (mostly the northern part) had 
lower surface water pCO2 (Figure 4). 
Thus, ongoing rapid sea ice retreat to the 
northern basin appears to have resulted 
in a recent increase in seawater pCO2 
in the Canada Basin that approaches 
the atmospheric pCO2.

Figure 6. Surface distributions of seawater partial pressure of CO2 (pCO2 in µatm) calculated from DIC and TA data collected during the 
summer of 2010 as part of the NASA ICESCAPES project (recent work of authors Bates and Mathis). Samples were collected from CTD/hydro-
cast stations occupied by the icebreaker USCGC Healy. DIC and TA sample analysis is described in Bates (2007). Seawater pCO2 was calculated 
using CO2calc (Robbins et al., 2010) using pKs of Mehrbach et al. (1973) as refit by Dickson and Millero (1987) and KSO4 of Dickson (1990). 
The data are plotted using Ocean Data View (Schlitzer, 2005).
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AIR-SEA CO2 FLUXES IN THE 
WESTERN ARC TIC OCEAN
The exchange of gases such as CO2 

between the atmosphere and the ocean 
is primarily controlled by gas concen-
tration differences between air and 
sea (i.e., air-sea CO2 disequilibrium 
or ΔpCO2) and by turbulence in the 
lower atmosphere (which is commonly 
parameterized as a function of wind 
speed; see Wanninkhof, 1992). In the 
earliest study of the inorganic carbon 
cycle in the Arctic Ocean, Kelley (1970) 
observed that surface waters in the 
Barents Sea had lower pCO2 values than 
the atmosphere. In the last two decades, 
more precise and accurate carbon data 
have been collected in the Arctic Ocean, 
allowing better assessments of its sink 
or source status.

In the Chukchi Sea, early season 
observations under near complete sea 
ice cover also indicate that Chukchi 
Sea shelf “winter” surface waters were 
not as undersaturated with respect 
to the atmosphere (ΔpCO2 values 
of ~ –20 to –60 µatm, with negative 
values indicating direction of gas 
exchange toward the ocean) compared 
to the summertime sea ice-free period 
(Bates, 2006). In contrast, summer-
time ΔpCO2 values are typically in the 
range of –50 to –200 µatm. Previous 
estimates of the rates of air-sea CO2 
exchange during the sea ice-free period 
in the summertime have ranged from 
~ –20 to –90 mmol CO2 m–2 d–1 (Wang 
et al., 2003; Murata and Takizawa, 2003; 
Bates, 2006; Fransson et al., 2009), 
indicating that the surface waters of 
the Chukchi Sea shelf have the poten-
tial to be a strong sink of atmospheric 
CO2 (Kaltin et al., 2002), similar to the 
Barents Sea shelf (Kelley, 1970; Fransson 
et al., 2001; Kaltin and Anderson, 2005). 

However, in regions of the Chukchi Sea 
shelf where sea ice cover remained high 
(> 80%) during the summertime, air-sea 
CO2 exchange rates were estimated to 
be generally low (i.e., ocean uptake of 
< 1 mmol CO2 m–2 d–1; Bates, 2006), 
while wintertime air-sea CO2 exchange 
rates (during complete sea ice cover) 
were estimated to be minor (i.e., ocean 
uptake of < 1 mmol CO2 m–2 d–1; Bates, 
2006) as sea ice coverage greatly reduces 
air-sea gas exchange. The annual ocean 
CO2 uptake for the Chukchi Sea shelf has 
been estimated at 2–9 mmol C m–2 yr–1 
(Kaltin and Anderson, 2005; Bates, 
2006), or approximately 11–53 Tg C yr–1 
(Table 1). More recent results from 
the 2008 CHINARE, 2009 RUSALCA, 
and 2010 ICESCAPES cruises further 
demonstrate that much of the Chukchi 
Sea is highly undersaturated, with a very 
strong potential for uptake of CO2 from 
the atmosphere (Figures 4, 5, 6). 

In contrast to the Chukchi Sea, the 
ocean CO2 sink or source terms for the 
East Siberian Sea shelf remain unclear. 
Semiletov et al. (2007) suggested 
that the western area of the shelf is 
a source of CO2 to the atmosphere 
(1 ± 1.6 mmol m–2 d–1 in 2003 and 
10.9 ± 12.6 mmoles C m–2 d–1 in 2004), 
particularly in the nearshore regions and 
close to river outflows onto the shelf. 
Nitishinsky et al. (2007) and Anderson 
et al. (2009) estimated that the East 
Siberian Sea shelf is a source of CO2 to 
the atmosphere (~ 0.3 mmol m–2 d–1), 
while Semiletov et al. (2007) reported 
that the Pacific Ocean water influenced 
eastern area of the East Siberia Sea is 
a sink for atmospheric CO2. Similarly, 
in the western Beaufort Sea, Murata 
and Takizawa (2003) estimated that 
surface waters were modest sinks 
for CO2 (~ 12 mmol CO2 m–2 d–1) 

during summertime. In the eastern 
Beaufort Sea shelf, surface waters 
are apparently minor sinks for CO2 
(Mucci et al., 2008; Fransson et al., 
2009, ~ 6 mmol CO2 m–2 d–1) or 
have a neutral status. Fransson et al. 
(2009) estimated that there is ocean 
CO2 uptake in the summertime in the 
eastern Beaufort Sea shelf. However, in 
areas with high sea ice cover (> 80%), 
air-to-sea CO2 fluxes were generally 
low (< 1–10 mmol CO2 m–2 d–1; Bates, 
2006; Fransson et al., 2009), again 
due to the physical barrier of sea ice. 
The annual ocean CO2 uptake for the 
Beaufort Sea shelf has been estimated at 
1.2 g C m–2 yr–1, low compared to other 
Arctic Ocean shelves (Table 1; Murata 
and Takizawa, 2003). In the Canada 
Basin, the potential uptake or release of 
CO2 remains uncertain. Prior to 2007, 
relatively low (~ 150–350 µatm) surface 
seawater pCO2 values of the Canada 
Basin suggested that these waters had the 
potential to uptake CO2 once exposed to 
the atmosphere (Fransson et al., 2009). 
However, the CO2 sink status of the 
Canada Basin appears to have signifi-
cantly changed since 2007 given that 
surface seawater pCO2 values close to 
atmospheric values have been observed 
(e.g., Yamamoto-Kawai et al., 2009; 
Cai et al., 2010)

The above studies suggest that the 
Chukchi Sea shelf dominates air-sea CO2 
fluxes in the western Arctic region, with 
the strong Chukchi Sea CO2 sink heavily 
outweighing potential minor sources 
of CO2 in the East Siberian Sea. Recent 
studies suggest that surface waters of 
the Arctic Ocean generally have low to 
very low CO2 concentrations compared 
to atmospheric CO2 concentrations 
(including the Barents Sea, Chukchi 
Sea, and Beaufort Sea shelves as well as 
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the central basin of the Arctic Ocean; 
Bates and Mathis, 2009). Thus, these 
surface waters have the ability to absorb 
relatively large amounts of CO2 (about 
66–175 Tg C yr–1). However, given 
more recent observations (Cai et al., 
2010), the 2007 sea ice loss event in the 
Arctic Ocean may have tipped it toward 
being a smaller sink of CO2. Because 
nutrients and therefore phytoplankton 
primary production are limited in the 
central basin, equilibrium of polar 
mixed-layer seawater CO2 with the 
atmosphere occurs because there are few 
processes to remove CO2 from surface 

waters. Thus, enhanced uptake of CO2 
through sea ice loss (e.g., Bates et al., 
2006a; Jutterström and Anderson, 2010) 
into newly exposed surface waters of 
the central basin is likely to be a very 
short-term phenomenon, and surface 
waters appear to be rapidly equilibrating 
with the atmosphere (Cai et al., 2010). 
In addition, it should be noted that the 
uptake of CO2 by the Arctic Ocean is 
small compared to the potential release 
of land-based carbon to the atmosphere 
from surrounding Arctic landmasses 
over the next few centuries as a result 
of climate change. Finally, potential 

increases in organic carbon respiration 
as a result of warming and enhanced 
terrestrial organic carbon flux due to 
thawing of permafrost and coastal 
erosion are difficult to evaluate but will 
certainly further modify the CO2 source-
sink terms in the Arctic Ocean under 
future climate change. 

OCEAN ACIDIFICATION 
IMPAC TS IN THE WESTERN 
ARC TIC OCEAN 
The decrease in seawater pH due to the 
uptake of anthropogenic CO2 (Bindoff 
et al., 2007; Bates, 2007) has been termed 

Table 1. Areas, depths, residence times, air-sea CO2 exchange rates expressed in mmoles C m–2 d–1, and  
annual air-sea CO2 exchange rate expressed in Tg C (1012 g C). Negative air-sea CO2 exchange rates indicate ocean  

uptake of CO2 (i.e., CO2 sink). Modified from Bates and Mathis (2009)

 Area
(km2)

Depth
(m)

Residence
(years)

Air-sea 
CO2 flux
(mmoles

C m–2 d–1)

Annual
CO2 flux

(Tg C yr–1) Reference

East  
Siberian  
Sea

987,000  58 3.5 ± 2

–1 to –10.9 –1.2 to –13 Semiletov et al. (2007)

+0.3 +0.3 Nitishinsky et al. (2007)

n/a –5.9 Anderson et al. (1998a,b)

Chukchi Sea 620,000  80 0.2 to 1.2

–12 –11 Murata and Takizawa (2003)

–40 ± 22 –36 to +6 Bates et al. (2006a)

n/a –46 to +6 Bates et al. (2006a) 

n/a –53 ± 14 Kaltin and Anderson (2001)

Beaufort Sea 178,000 124 0.5 to 1.0
n/a –2.9 Anderson et al. (1998a,b)

–12 –2 Murata and Takizawa (2003)

Central Basin 4,489,000 2,748 2 to 30 < –1 to –3 –6 to –19 Bates et al. (2006a)

Arctic Ocean 10,700,000

–66 to –199 Bates and Mathis (2009)

–129 ± 65 Anderson et al. (1990)

–70 ± 65 Anderson et al. (1994)

–110 Lundberg and Haugen (1996)

–24 ± 17 Anderson et al. (1998b)

–41 ± 18 Anderson et al. (1998b)

–31 Kaltin and Anderson (2005)

–66 Bates (2006)

–66 to –199 Bates and Mathis (2009)
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ocean acidification. As observed at 
several open-ocean time series stations, 
the uptake of anthropogenic CO2 has 
already decreased surface water pH by 
0.1 units. Intergovernmental Panel on 
Climate Change (IPCC) scenarios, based 
on present-day CO2 emissions, predict 
a further decrease in seawater pH by 
0.3 to 0.5 units over the next century 
and beyond (Caldeira and Wickett, 
2003). Ocean acidification and decreased 
pH reduces the saturation states of 
calcium carbonate minerals such as 
aragonite and calcite, with many studies 
showing decreased CaCO3 production 
by calcifying fauna (Buddemeier et al., 
2004; Fabry et al., 2008) and increased 
CaCO3 dissolution. The Arctic Ocean 
is particularly vulnerable to ocean 
acidification due to relatively low pH 
and low temperature of polar waters 
compared to other waters (Orr et al., 
2005; Steinacher et al., 2009) and low 
buffer capacity of sea ice meltwaters 
(Yamamoto-Kawai et al., 2009). In the 
Arctic Ocean, potentially corrosive 
waters are found in the subsurface layer 
of the central basin (Jutterström and 
Anderson, 2005; Yamamoto-Kawai et al., 
2009; Chierici and Fransson, 2009), on 
the Chukchi Sea shelf (Bates et al., 2009), 
and in outflow waters of the Arctic found 
on the Canadian Arctic Archipelago 
shelf (Azetsu-Scott et al., 2010). On 
the Chukchi Sea, waters corrosive to 
CaCO3 occur seasonally in the bottom 
waters, with unknown impacts to 
benthic organisms. The seasonally high 
rates of summertime phytoplankton 
primary production in the Chukchi Sea 
drive a downward export of organic 
carbon that is remineralized back to 
CO2, which in turn increases pCO2 (and 
decreases pH) of subsurface waters. Such 
seasonal biological influence on the pH 

of subsurface waters amplifies existing 
impacts of ocean acidification induced 
by the uptake of anthropogenic CO2 over 
the last century (Bates et al., 2009). Given 
the scenarios for pH changes in the 
Arctic, the Arctic Ocean, and adjacent 
Arctic shelves, including the western 
Arctic, will be increasingly affected by 
ocean acidification, with potentially 
negative implications for shelled benthic 
organisms as well as those animals that 
rely on the shelf seafloor ecosystem.

CONCLUSIONS
The continental shelves and central 
basin of the Pacific sector of the Arctic 
Ocean generally have lower surface 
CO2 content than the atmosphere. At 
present, although seasonal sea ice cover 
provides a barrier to atmosphere-ocean 
gas exchange, the Arctic Ocean is a sink 
for CO2, taking up about 65 to 175 Tg 
of carbon per year (Bates and Mathis, 
2009), contributing perhaps 5 to 14% 
to the global balance of CO2 sinks and 
sources (Takahashi et al., 2002, 2009). 
The Chukchi Sea is a large ocean sink for 
CO2 during the brief summertime sea 
ice-free period and contributes nearly 
one-third to one-half of the CO2 sink 
in the Arctic, with the Barents Sea the 
other dominant shelf region for air-sea 
CO2 exchange. There are, however, 
localized areas of surface seawater that 
are highly influenced by sea ice melt 
and river inputs where the opposite is 
observed, and these areas are poten-
tial sources of CO2 to the atmosphere 
(e.g., East Siberian Sea). On the Siberian 
and Beaufort Sea shelves, river inputs 
of terrestrial organic carbon contribute 
to net heterotrophy (e.g., Macdonald 
et al., 1998; Anderson et al., 2010, 2011) 
and sustained release of CO2 to the 
atmosphere on these Arctic “interior” 

shelves. Arctic Ocean CO2 chemistry 
is strongly influenced by physical and 
biological processes, including seasonal 
marine phytoplankton photosynthesis 
and growth during summertime sea ice 
retreat toward the pole, temperature 
effects (both cooling and warming), 
shelf-basin exchanges, formation of 
dense winter waters, and river inputs 
of freshwater and land-based carbon. 
Indeed, terrestrially derived DOC 
supplied to the Arctic shelves and 
central basins appears much more labile 
and susceptible to remineralization 
back to CO2 than previously thought 
(e.g., Hansell et al., 2004; Holmes et al., 
2008; Alling et al., 2010; Letscher et al., 
2011), with a longer-term potential of 
contributing to reversing the CO2 sink 
status of the Arctic. The Arctic Ocean 
will likely exert greater influence on 
the global carbon cycle in the coming 
decades, with the marine carbon cycle 
and atmosphere-ocean CO2 exchanges 
sensitive to both regional and global 
climate transitions and feedbacks. The 
capacity of the Arctic Ocean to uptake 
CO2 appears to be changing in response 
to climate and environmental change 
such as sea ice loss, Arctic warming, and 
increased inputs of terrestrially derived 
organic carbon. Finally, in response to 
increased marine phytoplankton growth 
and uptake of human-produced CO2, the 
seafloor ecosystem of the Arctic shelves 
already appears affected by ocean acidi-
fication, particularly those species that 
produce CaCO3 shells or skeletons. 
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