Oceanography The Official Magazine of
The Oceanography Society
Volume 26 Issue 03

View Issue TOC
Volume 26, No. 3
Pages 140 - 148

OpenAccess

Taking the Pulse of Marine Ecosystems: The Importance of Coupling Long-Term Physical and Biological Observations in the Context of Global Change Biology

Gretchen E. Hofmann Carol A. BlanchetteEmily B. Rivest Lydia Kapsenberg
Article Abstract

Research programs that co-locate environmental sensors with “biology” can enable the linking of environmental data with changes in biological or ecological processes. The coastal and marine Long Term Ecological Research (LTER) programs use this strategy, measuring parameters such as air and sea temperature, wave and storm energy, and seawater chemistry along with biological responses to them. This investment in technology has proven to be valuable and a major scientific asset for understanding how climate change, and environmental change in general, might alter marine populations and communities. Such a strategy can also aid in studies of global change biology of critical species, helping to place laboratory experiments and predictions of response in a broader environmental context. This coupling of long-term physical and biological observations has already detected fingerprints of change in sites such as the Palmer LTER situated on the western Antarctic Peninsula. In addition, new autonomous pH sensors recently deployed at two marine LTERs—Santa Barbara Coastal and Moorea Coral Reef—are generating long-term data sets that highlight the responses of their marine communities to rapidly changing ocean conditions.

Citation

Hofmann, G.E., C.A. Blanchette, E.B. Rivest, and L. Kapsenberg. 2013. Taking the pulse of marine ecosystems: The importance of coupling long-term physical and biological observations in the context of global change biology. Oceanography 26(3):140–148, https://doi.org/10.5670/oceanog.2013.56.

References

Arkema, K.K., D.C. Reed, and S.C. Schroeter. 2009. Direct and indirect effects of giant kelp determine benthic community structure and dynamics. Ecology 90:3,126–3,137, https://doi.org/​10.1890/08-1213.1.

Bates, N.R. 2007. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. Journal of Geophysical Research 112, C09013, https://doi.org/10.1029/2006JC003759.

Boyd, P.W. 2011. Beyond ocean acidification. Nature Geoscience 4:273–274, https://doi.org/​10.1038/ngeo1150.

Bradshaw, W.E., and C.M. Holzapfel. 2006. Evolutionary response to rapid climate change. Science 312:1,477–1,478, https://doi.org/​10.1126/science.1127000.

Bromirski, P.D., R.E. Flick, and D.R. Cayan. 2003. Storminess variability along the California coast: 1858–2000. Journal of Climate 16:982–993, https://doi.org/10.1175/​1520-0442(2003)016<0982:SVATCC>2.0.CO;2.

Buckley, L.B., and J.G. Kingsolver. 2012. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annual Review of Ecology, Evolution, and Systematics 43:205–226, https://doi.org/​10.1146/annurev-ecolsys-110411-160516.

Byrnes, J.E., D.C. Reed, B.J. Cardinale, K.C. Cavanaugh, S.J. Holbrook, and R.J. Schmitt. 2011. Climate-driven increases in storm frequency simplify kelp forest food webs. Global Change Biology 17:2,513–2,524, https://doi.org/10.1111/j.1365-2486.2011.02409.x.

Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365–365, https://doi.org/​10.1038/425365a.

Cavanaugh, K.C., D.A. Siegel, D.C. Reed, and P.E. Dennison. 2011. Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Marine Ecology Progress Series 429:1–17, https://doi.org/10.3354/meps09141.

Chapman, W.L., and J.E. Walsh. 2007. A synthesis of Antarctic temperatures. Journal of Climate 20:4,096–4,117, https://doi.org/​10.1175/JCLI4236.1.

Cheung, W.W.L., V.W.Y. Lam, J.L. Sarmiento, K. Kearney, R. Watson, and D. Pauly. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10:235–251, https://doi.org/​10.1111/j.1467-2979.2008.00315.x.

Cheung, W.W.L., J.L. Sarmiento, J. Dunne, T.L. Frölicher, V.W.Y. Lam, M.L. Deng Palomares, R. Watson, and D. Pauly. 2012. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change 3:254–258, https://doi.org/10.1038/nclimate1691.

Chown, S.L. 2012. Trait-based approaches to conservation physiology: Forecasting environmental change risks from the bottom up. Philosophical Transactions of the Royal Society B 367:1,615–1,627, https://doi.org/​10.1098/rstb.2011.0422.

Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1,302–1,310, https://doi.org/10.1126/science.199.4335.1302.

Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice, and G.M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332:53–58, https://doi.org/10.1126/science.1200303.

Dayton, P.K. 1985. Ecology of kelp communities. Annual Review of Ecology and Systematics 16:215–245, https://doi.org/​10.1146/annurev.es.16.110185.001243.

Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.

Dore, J.E., R. Lukas, D.W. Sadler, M.J. Church, and D.M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America 106:12,235–12,240, https://doi.org/​10.1073/pnas.0906044106.

Doropoulos, C., S. Ward, G. Diaz-Pulido, O. Hoegh-Guldberg, and P.J. Mumby. 2012. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology Letters 15:338–346, https://doi.org/10.1111/j.1461-0248.2012.01743.x.

Ducklow, H.W., W.R. Fraser, M.P. Meredith, S.E. Stammerjohn, S.C. Doney, D.G. Martinson, S.F. Sailley, O.M. Schofield, D.K. Steinberg, H.J. Venables, and C.D. Amsler. 2013. West Antarctic Peninsula: An ice-dependent coastal marine ecosystem in transition. Oceanography 26(3):190–203, https://doi.org/10.5670/oceanog.2013.62.

Easterling, D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns. 2000. Climate extremes: Observations, modeling, and impacts. Science 289:2,068–2,074, https://doi.org/10.1126/science.289.​5487.2068.

Edmunds, P.J., R.C. Carpenter, and S. Comeau. 2013. Understanding the threats of ocean acidification to coral reefs. Oceanography 26(3):149–152, https://doi.org/​10.5670/oceanog.2013.57.

Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414–432, https://doi.org/10.1093/icesjms/fsn048.

Fenster, M.S., and B.P. Hayden. 2007. Ecotone displacement trends on a highly dynamic barrier Island: Hog Island, Virginia. Estuaries and Coasts 30:978–988.

Frieder, C.A., and L.A. Levin. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences Discussions 9:4,099–4,132, https://doi.org/10.5194/bgd-9-4099-2012.

Frieler, K., M. Meinshausen, A. Golly, M. Mengel, K. Lebek, S.D. Donner, and O. Hoegh-Guldberg. 2013. Limiting global warming to 2°C is unlikely to save most coral reefs. Nature Climate Change 3:165–170, https://doi.org/​10.1038/nclimate1674.

Gienapp, P., C. Teplitsky, J.S. Alho, J.A. Mills, and J. Merilä. 2008. Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology 17:167–178, https://doi.org/10.1111/j.1365-294X.2007.03413.x.

Gille, S.T. 2002. Warming of the Southern Ocean since the 1950s. Science 295:1,275–1,277, https://doi.org/10.1126/science.1065863.

González-Dávila, M., J.M. Santana-Casiano, M.J. Rueda, and O. Llinás. 2010. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences Discussions 7:3,067–3,081, https://doi.org/10.5194/bg-7-3067-2010.

Graham, M.H. 2004. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems 7:341–357, https://doi.org/​10.1007/s10021-003-0245-6.

Graham, N.E., and H.F. Diaz. 2001. Evidence for intensification of North Pacific winter cyclones since 1948. Bulletin of the American Meteorological Society 82:1,869–1,893, https://doi.org/10.1175/1520-0477(2001)082​<1869:EFIONP>2.3.CO;2.

Graham, M.H., J.A. Vásquez, and A.H. Buschmann. 2007. Global ecology of the giant kelp Macrocystis: From ecotypes to ecosystems. Oceanography and Marine Biology: An Annual Review 45:39–88. Available online at: http://www.pet.ulagos.cl/investigacion/publicaciones/Graham et al 07.pdf (accessed July 24, 2013)

Harley, C.D.G., A.R. Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9:228–241, https://doi.org/​10.1111/j.1461-0248.2005.00871.x.

Harvey, B.P., D. Gwynn-Jones, and P.J. Moore. 2013. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution 3:1,016–1,030, https://doi.org/​10.1002/ece3.516.

Hayden, B.P., and N. Hayden. 2003. Decadal and century-long changes in storminess at long-term ecological research sites. Pp. 262–285 in Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. D. Greenland, D.G. Goodin, and R.S. Smith, eds, Oxford University Press, New York, NY.

Helmuth, B. 2009. From cells to coastlines: How can we use physiology to forecast the impacts of climate change? Journal of Experimental Biology 212:753–760, https://doi.org/10.1242/jeb.023861.

Hemer, M.A., Y. Fan, N. Mori, A. Semedo, and X.L. Wang. 2013. Projected changes in wave climate from a multi-model ensemble. Nature Climate Change 3:471–476, https://doi.org/​10.1038/nclimate1791.

Hoegh-Guldberg, O., P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, and others. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1,737–1,742, https://doi.org/​10.1126/science.1152509.

Hofmann, G.E., T.G. Evans, M.W. Kelly, J.L. Padilla-Gamiño, C.A. Blanchette, L. Washburn, F. Chan, M.A. McManus, B.A. Menge, B. Gaylord, and others. 2013. Exploring local adaptation and the ocean acidification seascape: Studies in the California Current Large Marine Ecosystem. Biogeosciences Discussions 10:11,825–11,856, https://doi.org/​10.5194/bgd-10-11825-2013.

Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, and others. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 6(12):e28983, https://doi.org/​10.1371/journal.pone.0028983.

Ibáñez, I., E.S. Gornish, L. Buckley, D.M. Debinski, J. Hellmann, B. Helmuth, J. HilleRisLambers, A.M. Latimer, A.J. Miller-Rushing, and M. Uriarte. 2013. Moving forward in global-change ecology: Capitalizing on natural variability. Ecology and Evolution 3:170–181, https://doi.org/10.1002/ece3.433.

IPCC. 2007a. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, eds, Cambridge University Press, Cambridge, UK and New York, NY, USA. Available online at: http://www.ipcc.ch/publications_and_data/ar4/wg2/en/contents.html (accessed July 23, 2013).

IPCC. 2007b. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and A. Reisinger, eds, Geneva, Switzerland, 104 pp. Available online at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm (accessed July 23, 2013).

Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, and M.R. Caldwell. 2011. Mitigating local causes of ocean acidification with existing laws. Science 332:1,036–1,037, https://doi.org/​10.1126/science.1203815.

Kelly, M.W., and G.E. Hofmann. 2012. Adaptation and the physiology of ocean acidification. Functional Ecology, https://doi.org/​10.1111/j.1365-2435.2012.02061.x.

Kelly, M.W., J.L. Padilla-Gamiño, and G.E. Hofmann. 2013. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Global Change Biology 19:2,536–2,546, https://doi.org/10.1111/gcb.12251

Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology 19:1,884–1,896, https://doi.org/10.1111/gcb.12179.

Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.S. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13:1,419–1,434, https://doi.org/​10.1111/j.1461-0248.2010.01518.x.

Lurgi, M., B.C. López, and J.M. Montoya. 2012. Novel communities from climate change. Philosophical Transactions of the Royal Society B 367:2,913–2,922, https://doi.org/​10.1098/rstb.2012.0238.

Martz, T.R., J.G. Connery, and K.S. Johnson. 2010. Testing the Honeywell Durafet® for seawater pH applications. Limnology and Oceanography: Methods 8:172–184, https://doi.org/10.4319/lom.2010.8.172.

Meehl, G.A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton. 2000. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81:427–436, https://doi.org/10.1175/1520-0477(2000)081​<0427:TIEWAC>2.3.CO;2.

Melillo, J., T. Richmond, and G. Yohe, eds. 2013. The United States National Climate Assessment. United States Global Change Research Program. Available online at: http://ncadac.globalchange.gov (accessed July 23, 2013).

Miller, R.J., D.C. Reed, and M.A. Brzezinski. 2011. Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnology and Oceanography 56:119–132, https://doi.org/10.4319/lo.2011.56.1.0119.

O’Connor, M.I., E.R. Selig, M.L. Pinsky, and F. Altermatt. 2012. Toward a conceptual synthesis for climate change responses. Global Ecology and Biogeography 21:693–703, https://doi.org/​10.1111/j.1466-8238.2011.00713.x.

Padilla-Gamiño, J.L., M.W. Kelly, T.G. Evans, and G.E. Hofmann. 2013. Temperature and CO2 additively regulate physiology, morphology and genomics responses in larval sea urchins, Strongylocentrotus purpuratus. Proceedings of the Royal Society B 280, https://doi.org/10.1098/rspb.2013.0155.

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637–669, https://doi.org/​10.1146/annurev.ecolsys.37.091305.110100.

Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42, https://doi.org/10.1038/nature01286.

Pettorelli, N. 2012. Climate change as a main driver of ecological research. Journal of Applied Ecology 49:542–545, https://doi.org/​10.1111/j.1365-2664.2012.02146.x.

Price, N.N., T.R. Martz, R.E. Brainard, and J.E. Smith. 2012. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS One 7(8):e43843, https://doi.org/10.1371/journal.pone.​0043843.

Provoost, P., S. van Heuven, K. Soetaert, R.W.P.M. Laane, and J.J. Middelburg. 2010. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7:3,869–3,878, https://doi.org/10.5194/bg-7-3869-2010.

Rau, G.H., E.L. McLeod, and O. Hoegh-Guldberg. 2012. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change 2:720–724, https://doi.org/10.1038/nclimate1555.

Reed, D.C., and M.A. Brzezinski. 2009. Kelp forests. P. 31 in The Management of Natural Coastal Carbon Sinks. D. Laffoley and G. Grimsditch, eds, IUCN, Gland, Switzerland.

Reed, D.C., and M.S. Foster. 1984. The effects of canopy shading on algal recruitment and growth in a giant-kelp forest. Ecology 65:937–948, https://doi.org/​10.2307/1938066.

Reed, D.C., A. Rassweiler, M.H. Carr, K.C. Cavanaugh, D.P. Malone, and D.A. Siegel. 2011. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology 92:2,108–2,116, https://doi.org/​10.1890/11-0377.1.

Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig, and J.A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60, https://doi.org/​10.1038/nature01333.

Ruckelshaus, M., S.C. Doney, H.M. Galindo, J.P. Barry, F. Chan, J.E. Duffy, C.A. English, S.D. Gaines, J.M. Grebmeier, and A.B. Hollowed. 2013. Securing ocean benefits for society in the face of climate change. Marine Policy 40:154–159, https://doi.org/10.1016/​j.marpol.2013.01.009.

Ruggiero, P., P.D. Komar, and J.C. Allan. 2010. Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest. Coastal Engineering 57:539–552, https://doi.org/​10.1016/j.coastaleng.2009.12.005.

Sanford, E. 1999. Regulation of keystone predation by small changes in ocean temperature. Science 283:2,095–2,097, https://doi.org/​10.1126/science.283.5410.2095.

Stammerjohn, S.E., D.G. Martinson, R.C. Smith, and R.A. Iannuzzi. 2008. Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Research Part II 55:2,041–2,058, https://doi.org/​10.1016/j.dsr2.2008.04.026.

Steinberg, D.K., D.G. Martinson, and D.P. Costa. 2012. Two decades of pelagic ecology in the western Antarctic Peninsula. Oceanography 25(3):56–67, https://doi.org/​10.5670/oceanog.2012.75.

Sunday, J.M., A.E. Bates, and N.K. Dulvy. 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change 2:686–690, https://doi.org/10.1038/nclimate1539.

Sutherland, W.J., S. Armstrong-Brown, P.R. Armsworth, B. Tom, J. Brickland, C.D. Campbell, D.E. Chamberlain, A.I. Cooke, N.K. Dulvy, N.R. Dusic, and others. 2006. The identification of 100 ecological questions of high policy relevance in the UK. Journal of Applied Ecology 43:617–627, https://doi.org/​10.1111/j.1365-2664.2006.01188.x.

Vaughan, D.G., G.J. Marshall, W.M. Connolley, C. Parkinson, R. Mulvaney, D.A. Hodgson, J.C. King, C.J. Pudsey, and J. Turner. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60:243–274, https://doi.org/10.1023/​A:1026021217991.

Visser, M.E. 2008. Keeping up with a warming world: Assessing the rate of adaptation to climate change. Proceedings of the Royal Society B 275:649–659, https://doi.org/​10.1098/rspb.2007.0997.

Waldbusser, G.G., E.P. Voigt, H. Bergschneider, M.A. Green, and R.I.E. Newell. 2011. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts 34:221–231, https://doi.org/10.1007/s12237-010-9307-0.

Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B 365:2,019–2,024, https://doi.org/​10.1098/rstb.2010.0021.

Williams, S.E., L.P. Shoo, J.L. Isaac, A.A. Hoffmann, and G. Langham. 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6(12):e325, https://doi.org/10.1371/journal.pbio.0060325.

Wootton, J.T, and C.A. Pfister. 2012. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH. Plos One 7(12):e53396, https://doi.org/​10.1371/journal.pone.0053396.

Wootton, J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105:18,848–18,853, https://doi.org/10.1073/pnas.0810079105.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.