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policy effort, knowledge of the physical 
environment is central to studying the 
forces that will change the distribution of 
marine organisms, challenge their physi-
ological tolerances, and alter species 
interactions, ultimately reshaping marine 
ecosystems. With this in mind, we 
highlight some long-term physical and 
biological data sets that have been col-
lected at US coastal marine Long Term 
Ecological Research (LTER) sites that are 
now, and will be in the future, essential 
tools for beginning to understand the 
consequences of environmental change 
in the context of global change biology. 

MEASURING  
ENVIRONMENTAL  
CHANGE
With long-term monitoring as a key 
component of their mission, the LTER 
sites are uniquely poised to capture 
environmental changes on time scales of 
years to decades that are relevant to eco-
system-level observations. Here, we high-
light examples from the coastal marine 
LTER sites that frame the argument that 

documenting and understanding the 
nature of changes in the physical environ-
ment, in addition to monitoring biologi-
cal and ecological attributes, is critical to 
our ability to predict responses of species 
and ecosystems to global change. Below, 
we focus on three key environmental 
parameters that are now being measured 
at several LTER sites and are likely to be 
drivers of ecological changes in these 
ecosystems in the near future: (1) air 
and sea temperature, (2) wave and storm 
energy, and (3) seawater chemistry. 

Air and Sea Temperature
Temperature is well known to affect 
organisms and populations in a climate 
change context (Parmesan, 2006), with 
range shifts tending to be dominant 
responses of populations to temperature 
change. For marine ecosystems, using 
long-term data sets to link physiologi-
cal and organismal responses to tem-
perature is especially important as most 
ectothermic marine species are already 
operating at or near their thermal limits 
(Sunday et al., 2012). One example of 
foundational temperature data is from 
the Palmer (PAL) LTER site on the 
western Antarctic Peninsula (WAP). Air 
temperatures over Antarctica (Chapman 
and Walsh, 2007) and seawater tem-
peratures in the Southern Ocean have 
warmed (Gille, 2002). This region of 
the Southern Ocean has one of the fast-
est warming rates on Earth, with a 3°C 
increase in annual mean air temperature 
and a 6°C rise in mean winter tempera-
ture over the last six decades (Vaughan 
et al., 2003). This rapid increase in tem-
perature is linked to a decline in sea ice 
extent. Recorded since 1990, PAL LTER 
data have captured a dramatic decline in 
sea ice in the WAP region (Stammerjohn 

INTRODUCTI ON
Forecasting the consequences of cli-
mate change is a central research 
priority for the scientific community 
(e.g., Sutherland et al., 2006; Walther, 
2010; Dawson et al., 2011; Buckley and 
Kingsolver, 2012; Ibáñez et al., 2013). 
In marine ecosystems, investigators 
have explored issues specific to coral 
reef decline (Hoegh-Guldberg et al., 
2007; Frieler et al., 2013), the combined 
impacts of ocean acidification and ocean 
warming on marine organisms (Boyd, 
2011; Harvey et al., 2013), and projected 
consequences to fisheries (Cheung et al., 
2009, 2012). At the same time, policy-
makers have focused on the impacts of 
climate change on marine resources that 
are important to economies (e.g., IPCC, 
2007b; Kelly et al., 2011; Rau et al., 2012; 
Melillo et al., 2013). At the heart of all 
these efforts is the need to understand 
the adaptive capacity and vulnerability 
of organisms in the face of rapid envi-
ronmental change (Williams et al., 2008; 
Dawson et al., 2011). 

Given this critical scientific and 

ABSTRACT  . Research programs that co-locate environmental sensors with 
“biology” can enable the linking of environmental data with changes in biological or 
ecological processes. The coastal and marine Long Term Ecological Research (LTER) 
programs use this strategy, measuring parameters such as air and sea temperature, 
wave and storm energy, and seawater chemistry along with biological responses to 
them. This investment in technology has proven to be valuable and a major scientific 
asset for understanding how climate change, and environmental change in general, 
might alter marine populations and communities. Such a strategy can also aid 
in studies of global change biology of critical species, helping to place laboratory 
experiments and predictions of response in a broader environmental context. This 
coupling of long-term physical and biological observations has already detected 
fingerprints of change in sites such as the Palmer LTER situated on the western 
Antarctic Peninsula. In addition, new autonomous pH sensors recently deployed at 
two marine LTERs—Santa Barbara Coastal and Moorea Coral Reef—are generating 
long-term data sets that highlight the responses of their marine communities to 
rapidly changing ocean conditions. 
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et al., 2008), with associated conse-
quences for WAP marine ecosystems 
(Steinberg et al., 2012; see also further 
discussion in Ducklow et al., 2013, 
in this issue).

Wave and Storm Energy
Most climate change models show 
that the future will be characterized 
by increases in the frequency and pos-
sibly the severity of many forms of 
large abiotic disturbances across the 
globe (Easterling et al., 2000; Meehl 
et al., 2000; Hemer et al., 2013). Over 
the last 60 years in the eastern Pacific, 
the frequency of large waves driven by 
winter storms has increased (Graham 
and Diaz, 2001; Bromirski et al., 2003; 

Ruggiero et al., 2010). This increase in 
physical disturbance could have det-
rimental effects on coastal ecosystems 
dominated by the giant kelp Macrocystis 
pyrifera, a foundational species that 
provides habitat and energy to fuel a 
highly complex and productive food web 
(Dayton, 1985; Graham, 2004; Reed and 
Brzezinski, 2009). Large waves associ-
ated with winter storms often tear out 
giant kelp (Figure 1), reducing their 
abundance and likely changing the 
structure of the associated kelp forest 
food web as well as light, hydrodynam-
ics, and the three-dimensional structure 
of the habitat (Graham et al., 2007). 
Periodic disturbances are a natural com-
ponent of almost every ecosystem, and 

many ecological models predict that the 
mortalities caused by occasional dis-
turbances can be vital for maintaining 
biological diversity as well as renewing 
essential nutrients. For example, elevated 
resources resulting from the loss of giant 
kelp have been shown to enhance the 
diversity and production of understory 
algae (Reed and Foster, 1984; Arkema 
et al., 2009; Miller et al., 2011). However, 
models also predict a decrease in species 
diversity when the frequency or sever-
ity of disturbances becomes too great 
(Connell, 1978).

Long-term research at the Santa 
Barbara Coastal (SBC) LTER site has 
demonstrated the overwhelming impor-
tance of wave disturbance as a dominant 
structuring force in kelp forest ecosys-
tems (Cavanaugh et al., 2011; Reed et al., 
2011). SBC LTER researchers examined 
the relative importance of nutrient avail-
ability (bottom-up), grazing pressure 
(top-down), and storm waves (distur-
bance) in controlling the abundance 
and productivity of giant kelp offshore 
central and southern California. Central 
California kelp forests exist in a region of 
high wave exposure and high nutrients, 
but low urchin grazer abundance, rela-
tive to southern California forests. While 
both bottom-up and top-down theories 
predict that central California kelp bio-
mass and production should be greater 
than that of southern California due to 
increased productivity and reduced graz-
ing pressure, SBC LTER scientists predict 
that the intense wave disturbances on 
the central coast could overwhelm the 
bottom-up and top-down forces (Reed 
et al., 2011). Indeed, SBC LTER research-
ers found that biomass and production 
of giant kelp were generally lower in cen-
tral California (Figure 2). 

In addition to the direct effects of 
wave disturbance on kelp biomass and 

Figure 1. Piles of giant kelp line the sandy beaches of Southern California following a large wave event. 
Photo credit: Shane Anderson
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productivity, SBC LTER researchers have 
also shown that the effects of wave dis-
turbance on giant kelp cascade through 
the kelp forest food web. Results of 
experimental kelp removals and model 
simulations suggest a sequence of change 
in food web structure following multiple 
consecutive years of large storms (Byrnes 
et al., 2011). A single storm hitting a 
relatively undisturbed kelp forest appears 
to increase complexity, while concen-
trating most species at the resource and 
primary consumer trophic levels. Higher 
trophic levels do not disappear after ini-
tial kelp loss, but rather diversity within 
these higher trophic levels declines. As 
storms continue year after year, food 
webs begin to collapse, and the richness 
of species, whether grouped by trophic 
level or functional attributes, declines. 
Thus, an increase in the frequency of 
large storms (as widely predicted by 
climate change models) is likely to lead 
not only to decreases in giant kelp pri-
mary productivity, but also to decreases 
in the diversity and complexity of kelp 
forest food webs.

The idea that changing climate con-
ditions may lead to larger, more fre-
quent, and intense storms has received 
increasing support in recent years in 
the wake of several large hurricanes 
and “superstorms” in the United States 
(e.g., Katrina and Sandy). Storm inten-
sity continues to be measured at the 
Virginia Coast Reserve (VCR) LTER, 
contributing to a time series starting 
in the 1880s. These data reveal a pat-
tern of increasing storm intensity over 
the last century in this barrier island 
region of the US East Coast (Figure 3). 
Researchers at VCR LTER have also 
shown that infrequent but extreme 
events such as major storms have a sig-
nificant effect on the state of the dynamic 
barrier island coastline and should be 

considered in long-term projections of 
how future increases in storm intensity 
will alter the structure of the shoreline 
ecosystem (Fenster and Hayden, 2007).

Seawater Chemistry
Driven by increasing atmospheric CO2 
levels, ocean acidification has emerged 
as the most recent threat to healthy 
ocean ecosystems (Hoegh-Guldberg 
et al., 2007; Fabry et al., 2008; Doney 
et al., 2009). A few long-term data sets 
on carbonate chemistry have captured 
surface ocean acidification. Three 
low-latitude, open-ocean pH monitor-
ing programs—Hawaii Ocean Time-
series (http://hahana.soest.hawaii.edu/
hot), Bermuda-Atlantic Time-series 
Study (http://bats.bios.edu), and the 
European Station for Time Series in 
the Ocean, Canary Islands (http://estoc.
plocan.eu)—have measured an average 
decline of 0.002 pH units per year (Bates, 
2007; Dore et al., 2009; González-Dávila 

et al., 2010). Additionally, time-series 
data describing shifts in carbonate chem-
istry in coastal regions have appeared 
in the last five years (Wootton et al., 
2008; Provoost et al., 2010; Waldbusser 
et al., 2011; Wootton and Pfister, 2012). 
These data sets, along with projections 
of future acidification (Caldeira and 
Wickett, 2003; IPCC, 2007a), sparked a 
global research effort to understand the 
biological implications of future ocean 
conditions. Over the past decade, labo-
ratory acidification experiments have 
highlighted largely negative and complex 
species-specific effects in response to 
reduced pH/elevated pCO2 (Fabry et al., 
2008; Doney et al., 2009; Kroeker et al., 
2010, 2013; Harvey et al., 2013). Despite 
this growing knowledge base, the lack 
of information on environmentally 
relevant pH conditions for these study 
species clouds the predictive interpre-
tation of laboratory-based biological 
experimental results.
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Figure 2. Wave disturbance in Southern California affects the abundance of giant kelp. Despite lower sea 
urchin densities (a) and higher nitrate loads (b) in Central (black) vs. Southern California (gray), kelp for-
est density (c) and net primary productivity (d) are limited by wave disturbance. Figure reproduced with 
permission from the Santa Barbara Coastal LTER
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Although the long-term data sets 
of open-ocean carbonate chemistry 
have been essential to our understand-
ing of global changes in oceanic pH, 
these data do not directly inform ocean 
acidification processes in coastal or 
nearshore marine ecosystems, habitats 
that provide many services to humans 
(Ruckelshaus et al., 2013) and are 
the locations of most of the world’s 
fisheries. Additionally, projections of 
future ocean pH conditions from the 
Intergovernmental Panel on Climate 
Change and others are based on global 
emission scenarios and large-scale ocean 
processes that lack resolution neces-
sary to predict changes on regional and 
local scales (see Wootton and Pfister, 
2012). Long-term data sets of carbonate 
chemistry parameters in shallow, coastal 
ecosystems are essential for predicting 
biological responses to ocean acidifica-
tion. Ultimately, the biological impacts 
of ocean acidification in nearshore ben-
thic marine communities will depend 
on (1) the degree of acclimatization/

adaptation to local pH regimes and 
(2) the rate and magnitude of pH 
changes in these regions in the future. 

New LTER Technology: SeaFET, 

An Autonomous pH Sensor

New autonomous pH sensors called 
SeaFETs (Martz et al., 2010) are cur-
rently measuring ocean conditions at two 
LTER sites—SBC and Moorea Coral Reef 
(MCR). Data from these instruments 
are not only providing environmen-
tally relevant information on local pH 
conditions, but also advancing the way 
we think about pH variability. SeaFET 
deployments in nearshore regions around 
the globe have revealed remarkable dif-
ferences in pH variability across eco-
systems (Hofmann et al., 2011; Frieder 
and Levin, 2012; Price et al., 2012; recent 
work of Francis Chan, Oregon State 
University, and colleagues), dispelling the 
notion of ocean acidification as a homog-
enous, global environmental stressor. 
The LTER SeaFET deployments highlight 
the importance of quantifying pH both 

spatially and temporally as a holistic 
approach to ocean acidification research 
emphasizing the need to co-locate pH 
sensors with biological experiments and 
ecological monitoring sites (Price et al., 
2012; Hofmann et al., 2013). 

Specifically, LTER SeaFET deploy-
ments have revealed striking differ-
ences in the patterns of variability in pH 
dynamics across a variety of spatial scales 
(Figure 4). The SBC LTER is located 
in the Santa Barbara Channel region 
of Southern California. Here, complex 
bathymetry and oceanographic processes 
as well as a coastline perforated with 
kelp forests contribute to large tempo-
ral and spatial fluctuations in pH in the 
nearshore environment. For example, 
over two months, pH at a mainland 
site fluctuated between 7.603 and 8.232 
(mean pH: 7.934), while pH at Anacapa 
Island ranged from 7.847 to 8.075 (mean 
pH: 7.953). Although separated by only 
54 km, these sites share similar species 
compositions and mean pH values, yet 
they differ dramatically in the temporal 
pattern of pH variability. Within the 
MCR LTER, located in the center of the 
tropical Pacific Ocean, spatial patterns 
of pH variability are maintained across 
relatively small spatial scales (~ 1 km). 
Here, the range of variability in pH dif-
fers between an exposed fore reef site and 
a fringing reef site 1 km shoreward across 
a lagoon (Figure 4). During the three-
week deployment, pH at the fore reef and 
fringing reef ranged from 8.062–8.116 
(mean pH: 8.088) and 8.042–8.226 
(mean pH: 8.130), respectively. These 
data provide a glimpse of the variability 
in environmental conditions across a 
range of temporal and spatial scales that 
organisms are currently experiencing, 
and they provide an important context 
for interpreting the responses of organ-
isms to experimental ocean acidification 
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conditions in laboratory experiments. 
Understanding the natural pH vari-

ability to which breeding populations are 
locally adapted or acclimatized is critical 
in order to predict species’ performance 
under future ocean acidification sce-
narios. Several SeaFET networks have 
successfully linked natural pH variability 
to performance and ecosystem pro-
cesses (Price et al., 2012; Hofmann et al., 
2013; Padilla-Gamiño et al., 2013). For 
example, in the remote tropical Pacific, 
reefs that spent more hours at low pH 
showed slower net calcium carbonate 
accretion rates and a greater abundance 
of fleshy colonizers (Price et al., 2012). 
The LTER framework of established, 
well-characterized sites provides a 
unique opportunity to explore bio-
physical coupling between site-specific 
“pH-seascapes” (Hofmann et al., 2011) 
and tolerance of local populations to 
future ocean acidification. Differences 
in pH variability across these small 
spatial scales may foster a diversity of 
pH-related phenotypes among breeding 
populations, increasing the potential for 
resilience of species at regional scales. In 
this light, data from SeaFETs in LTERs 
may contribute to studies of acclimatiza-
tion and adaptation potential of marine 
species to future ocean acidification 
(Kelly and Hofmann, 2012). Biological 
studies complementary to ongoing 
SeaFET deployments at LTER sites will 
serve to ground our understanding of 
the effects of ocean acidification under 
natural environmental conditions while 
informing effects of changing ocean con-
ditions on marine ecosystems. 

LONG-TERM STUDIES AND 
GLOBAL CHANGE BIOLOGY 
The importance of LTER-based long-
term data sets is amplified when placed 
in the context of global change biology, 

an integrative field that focuses on pre-
dicting the response of species and bio-
logical communities to human-induced 
changes such as climate change, eutro-
phication, or ocean acidification. Some 
of the first synthetic reports noted spe-
cies range shifts as fingerprints of climate 
change (Parmesan and Yohe, 2003; Root 
et al., 2003; Parmesan, 2006). Recently, 
researchers have called for moving 
“beyond prediction” to concrete action 
in management and conservation efforts 
(e.g., Williams et al., 2008; Dawson 
et al., 2011; Pettorelli, 2012; Ibáñez et al., 
2013). As these discussions advance, it is 
clear that species’ sensitivities to abiotic 
conditions and their adaptive capacities 
are ideally framed with knowledge of 
the physical environment and the degree 
of natural variability that has acted as a 
selective force in the past. 

In this light, LTER data sets will 

support a range of activities in experi-
mental biology and ecology that focus on 
addressing the responses of species, pop-
ulations, and ecosystems. Ecologically 
relevant data help parameterize labora-
tory and mesocosm experiments. Here, 
there has been a growing appreciation 
that knowing a species’ physiological 
plasticity of important traits is a central 
element in determining adaptive capacity 
in the face of abiotic change such as tem-
perature, physical disturbance, and pH 
(Visser, 2008; Helmuth, 2009; Dawson 
et al., 2011; Buckley and Kingsolver, 
2012; Chown, 2012; Ibáñez et al., 2013). 
In addition to physiological plasticity, 
rapid evolution and adaptation is another 
type of response to climate change and 
may also play an important role in spe-
cies’ future tolerances (e.g., Bradshaw and 
Holzapfel, 2006). LTER data sets will cer-
tainly play a role in studies of this nature 
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both in terms of describing the rate of 
change of environmental conditions and 
in supporting hypotheses-based testing 
of how genetic responses might contrib-
ute to species’ responses to abiotic change 
in marine ecosystems (see Gienapp 
et al., 2008; Kelly and Hofmann, 2012; 
O’Connor et al., 2012; Kelly et al., 2013). 

Finally, LTER data sets support the 
study of how environmental change 
will alter ecosystem structure and func-
tion via impacts on species interactions. 
Studies of this essential research area are 
lagging as compared to studies of spe-
cies range shifts (e.g., Harley et al., 2006; 
Walther, 2010). Changes in present-day 
interactions will have far-reaching con-
sequences for community composition 
and function (Lurgi et al., 2012). Key 
predator-prey interactions can be sen-
sitive to temperature (Sanford, 1999), 
and relatively small changes in seawater 
pH can alter competitive interactions 
(Kroeker et al., 2013) as well as larval 
settlement behavior (Doropoulos et al., 
2012). Understanding how climate 
change will affect not only individual 
species but also interactions among spe-
cies will be critical to forecasting the 
community and ecosystem-level impacts 
of changing climate conditions.

CONCLUSION
The network of coastal LTER sites is 
positioned to meet one of the grand 
challenges in the Anthropocene: docu-
menting and forecasting the impact of 
global change on marine ecosystems. 
Collectively, the LTERs highlighted 
here are gathering data sets for coastal 
and pelagic ecosystems that host high 
biodiversity and support critical ecosys-
tem services. The future of these LTER 
efforts will continue to frame questions 
central to global change biology and sup-
port ecological and organismal studies 

in these key ecosystems, as evidenced 
by the emerging data sets on carbon-
ate chemistry that will support research 
in ocean acidification (Edmunds et al., 
2013, in this issue). One of the inherent 
complexities in predicting the outcome 
of environmental change-related impacts 
is the difficulty of layering projected 
changes on existing natural environ-
mental variability. This research area will 
continue to be active within the LTER 
community, where LTER-based long-
term ecological studies are critical for 
providing key insights in ecology and 
environmental change, and will continue 
to be a valuable source of information to 
inform future research. 
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