Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acidify the region’s poorly buffered coastal waters. Despite the apparent vulnerability of these waters, and fisheries’ and mariculture’s significant dependence on calcifying species, the community lacks the ability to confidently predict how the region’s ecosystems will respond to continued ocean and coastal acidification. Here, we discuss ocean and coastal acidification processes specific to New England coastal and Nova Scotia shelf waters and review current understanding of the biological consequences most relevant to the region. We also identify key research and monitoring needs to be addressed and highlight existing capacities that should be leveraged to advance a regional understanding of ocean and coastal acidification.


Gledhill, D.K., M.M. White, J. Salisbury, H. Thomas, I. Mlsna, M. Liebman, B. Mook, J. Grear, A.C. Candelmo, R.C. Chambers, C.J. Gobler, C.W. Hunt, A.L. King, N.N. Price, S.R. Signorini, E. Stancioff, C. Stymiest, R.A. Wahle, J.D. Waller, N.D. Rebuck, Z.A. Wang, T.L. Capson, J.R. Morrison, S.R. Cooley, and S.C. Doney. 2015. Ocean and coastal acidification off New England and Nova Scotia. Oceanography 28(2):182–197, https://doi.org/10.5670/oceanog.2015.41.

Supplementary Materials

» Supplemental Methods (115 KB pdf) Time-series analyses were evaluated at each of the locations denoted in Figure 4 using actual discrete time-series data where available (western Gulf of Maine, Long Island Sound) or by extracting estimates using the gridded data product produced by Signorini et al. (2013).

» Supplemental Table S1 (102 KB xlsx file) Organismal responses of New England/Nova Scotia region species or congeners to increased pCO2 conditions.  Responses are indicated in relation to the numbered treatments of each study.  Subscripts are used to indicate at which treatment pCO2 level a significant response was seen, compared to the lowest pCO2 treatment, unless otherwise noted.

» Table S1 References (244 KB pdf)


Andersson, A.J., D.I. Kline, P.J. Edmunds, S.D. Archer, N. Bednaršek, R.C. Carpenter, M. Chadsey, P. Goldstein, A.G. Grottoli, T.P. Hurst, and others. 2015. Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 28(2):16–27, https://doi.org/10.5670/oceanog.2015.27.

Anderson, T.H., and G.T. Taylor. 2001. Nutrient pulses, plankton blooms, and seasonal hypoxia in western Long Island Sound. Estuaries 24:228–243, https://doi.org/10.2307/1352947.

Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, B. Eudeline, C.J. Langdon, I. Jefferds, and others. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159, https://doi.org/10.5670/oceanog.2015.38.

Bednaršek, N., R.A. Feely, J.C.P. Reum, B. Peterson, J. Menkel, S.R. Alin, and B. Hales. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proceedings of the Royal Society B 281:20140123, https://doi.org/10.1098/rspb.2014.0123.

Bourque, B.J., B. Johnson, and R.S. Steneck. 2007. Possible prehistoric hunter-gatherer impacts on food web structure in the Gulf of Maine. Pp. 165–187 in Human Impacts on Ancient Marine Environments. J. Erlandson and R. Torben, eds, University of California Press, Berkeley, CA.

Breitburg, D.L., J. Salisbury, J.M. Bernhard, W.-J. Cai, S. Dupont, S.C. Doney, K.J. Kroeker, L.A. Levin, W.C. Long, L.M. Milke, and others. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28(2):48–61, https://doi.org/10.5670/oceanog.2015.31.

Burt, W., H. Thomas, and J.-P. Auclair. 2013. Short-lived radium isotopes on the Scotian Shelf: Unique distribution and tracers of cross-shelf CO2 and nutrient transport. Marine Chemistry 156:120–129, https://doi.org/10.1016/j.marchem.2013.05.007.

Busch, D.S., M.J. O’Donnell, C. Hauri, K.J. Mach, M. Poach, S.C. Doney, and S.R. Signorini. 2015. Understanding, characterizing, and communicating responses to ocean acidification: Challenges and uncertainties. Oceanography 28(2):30–39, https://doi.org/10.5670/oceanog.2015.29.

Chambers, R.C., A.C. Candelmo, E.A. Habeck, M.E. Poach, D. Wieczorek, K.R. Cooper, C.E. Greenfield, and B.A. Phelan. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11:1,613–1,626, https://doi.org/10.5194/bg-11-1613-2014.

Clements, J.C., and H.L. Hunt. 2014. Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). Journal of Experimental Marine Biology and Ecology 453:62–69, https://doi.org/10.1016/j.jembe.2014.01.002.

Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, and others. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253–260, https://doi.org/10.1038/387253a0.

Craig, S.E., H. Thomas, C.T. Jones, W.K.W. Li, B.J.W. Greenan, E.H. Shadwick, and W.J. Burt. In press. The effect of seasonality in phytoplankton community composition on CO2 uptake on the Scotian Shelf. Journal of Marine Systems, https://doi.org/10.1016/j.jmarsys.2014.07.006

Cripps, G., P. Lindeque, and K. Flynn. 2014. Have we been underestimating the effects of ocean acidification on zooplankton? Global Change Biology 20:3,377–3,385, https://doi.org/10.1111/gcb.12582.

Dickson, R.R., R. Curry, and I. Yashayaev. 2003. Recent changes in the North Atlantic. Philosophical Transactions of the Royal Society of London A 361:1,917–1,934, https://doi.org/10.1098/rsta.2003.1237.

Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192, https://doi.org/10.1146/annurev.marine.010908.163834.

Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, and others. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37, https://doi.org/10.1146/annurev-marine-041911-111611.

Dupont, S., N. Dorey, M. Stumpp, F. Melzner, and M. Thorndyke. 2013. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology 160:1,835–1,843, https://doi.org/10.1007/s00227-012-1921-x.

Ekstrom, J., L. Suatoni, S. Cooley, L. Pendleton, G.G. Waldbusser, J. Cinner, J. Ritter, C. Langdon, R. van Hooidonk, D. Gledhill, and others. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change 5:207–214, https://doi.org/10.1038/nclimate2508.

Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414–432, https://doi.org/10.1093/icesjms/fsn048.

Fratantoni, P.S., T. Holzwarth-Davis, C. Bascuñán, and M.H. Taylor. 2013. Description of the 2012 Oceanographic Conditions on the Northeast U.S. Continental Shelf. United States Department of Commerce, Northeast Fisheries Science Center Reference Document 13-26, National Marine Fisheries Service, Woods Hole, MA, 40 pp.

Friedrich, T., A. Timmermann, A. Abe-Ouchi, N.R. Bates, M.O. Chikamoto, M.J. Church, J.E. Dore, D.K. Gledhill, M. Gonzalez-Davila, M. Heinemann, and others. 2012. Detecting regional anthropogenic trends in ocean acidification against natural variability. Nature Climate Change 2:167–171, https://doi.org/10.1038/nclimate1372.

Frommel, A.Y., R. Maneja, D. Lowe, A.M. Malzahn, A.J. Geffen, A. Folkvord, U. Piatkowski, T.B.H. Reusch, and C. Clemmesen. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change 2:42–46, https://doi.org/10.1038/nclimate1324.

Frommel, A.Y., A. Schubert, U. Piatkowski, and C. Clemmesen. 2013. Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Marine Biology 160:1,825–1,834, https://doi.org/10.1007/s00227-011-1876-3.

Frommel, A.Y., V. Stiebens, C. Clemmesen, and J. Havenhand. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7:3,915–3,919, https://doi.org/10.5194/bg-7-3915-2010.

Gledhill, D., R. Wanninkhof, and M. Eakin. 2009. Observing ocean acidification from space. Oceanography 22(4):48–59, https://doi.org/10.5670/oceanog.2009.96.

Gledhill, D.K., R. Wanninkhof, F.J. Millero, and M. Eakin. 2008. Ocean acidification of the Greater Caribbean Region 1996–2006. Journal of Geophysical Research 113, C10031, https://doi.org/10.1029/2007JC004629.

Geyer, W.R., P.S. Hill, and G.C. Kineke. 2004. The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research 24:927–949, https://doi.org/10.1016/j.csr.2004.02.006.

Gobler, C.J., and S.C. Talmage. 2013. Short-and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences 10:2,241–2,253, https://doi.org/10.5194/bg-10-2241-2013.

Gobler, C.J., and S.C. Talmage. 2014. Physiological response and resilience of early life-stage Eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conservation Physiology 2:cou004, https://doi.org/10.1093/conphys/cou004.

Green, M.A., M.E. Jones, C.L. Boudreau, R.L. Moore, and B.A. Westman. 2004. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49:727–734, https://doi.org/10.4319/lo.2004.49.3.0727.

Green, M.A., G.G. Waldbusser, L. Hubazc, E. Cathcart, and J. Hall. 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries and Coasts 36:18–27, https://doi.org/10.1007/s12237-012-9549-0.

Green, M.A., G.G. Waldbusser, S.L. Reilly, and K. Emerson. 2009. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnology and Oceanography 54:1,037–1,047, https://doi.org/10.4319/lo.2009.54.4.1037.

Hale, R.L., J.H. Hoover, W.M. Wollheim, and C.J. Vörösmarty. 2013. History of nutrient inputs to the northeastern United States, 1930–2000. Global Biogeochemical Cycles27:578–591, https://doi.org/10.1002/gbc.20049.

Head, E.J.H., and D.D. Sameoto. 2007. Inter-decadal variability in zooplankton and phytoplankton abundance on the Newfoundland and Scotian shelves. Deep-Sea Research Part II 54:2,686–2,701, https://doi.org/10.1016/j.dsr2.2007.08.003.

Hodgkins, G.A., R.W. Dudley, and T.G. Huntington. 2003. Changes in the timing of high river flows in New England over the 20th Century. Journal of Hydrology 278:244–252, https://doi.org/10.1016/S0022-1694(03)00155-0.

Hopkins, T.S., and N. Garfield III. 1979. Gulf of Maine intermediate waters. Journal of Marine Research 37:103–139.

Horton, R., G. Yohe, W. Easterling, R. Kates, M. Ruth, E. Sussman, A. Whelchel, D. Wolfe, and F. Lipschultz. 2014. Northeast. Pp. 371–395 in Climate Change Impacts in the United States: The Third National Climate Assessment. J.M. Melillo, T.C. Richmond, and G.W. Yohe, eds, United States Global Change Research Program.

Hutchins, D.A., M.R. Mulholland, and F. Fu. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22(4):128–145, https://doi.org/10.5670/oceanog.2009.103.

Johnson, M.D., V.W. Moriarty, and R.C. Carpenter. 2014. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2):e87678, https://doi.org/10.1371/journal.pone.0087678.

Kaplan, M.B., T.A. Mooney, D.C. McCorkle, and A.L. Cohen. 2013. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS ONE 8:e63714, https://doi.org/10.1371/journal.pone.0063714.

Keppel, E.A., R.A. Scrosati, and S.C. Courtenay. 2012. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. Journal of Northwest Atlantic Fisheries Science 44:61–66, https://doi.org/10.2960/J.v44.m683.

Koch, M., G. Bowes, C. Ross, and X.H. Zhang. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19:103–132, https://doi.org/10.1111/j.1365-2486.2012.02791.x.

Kroeker, K.J., R.L. Kordas, R.N. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology 19:1,884–1,896, https://doi.org/10.1111/gcb.12179.

Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13:1,419–1,434, https://doi.org/10.1111/j.1461-0248.2010.01518.x.

Kunkel, K.E., L.E. Stevens, S.E. Stevens, L. Sun, E. Janssen, D. Wuebbles, J. Rennells, A. DeGaetano, and J.G. Dobson. 2013. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment: Part 1. Climate of the Northeast U.S. NOAA Technical Report NESDIS 142-1, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Washington, DC, 87 pp., http://www.nesdis.noaa.gov/technical_reports/NOAA_NESDIS_Tech_Report_142-1-Climate_of_the_Northeast_U.S.pdf.

Lane, A.C., J. Mukherjee, V.B.S. Chan, and V. Thiyagarajan. 2013. Decreased pH does not alter metamorphosis but compromises juvenile calcification of the tube worm Hydroides elegans. Marine Biology 160:1,983–1,993, https://doi.org/10.1007/s00227-012-2056-9.

Latimer, J.S., M.A. Tedesco, R.L. Swanson, C. Yarish, P.E. Stacey, and C. Garza, eds. 2014. Long Island Sound: Prospects for the Urban Sea. Springer Series on Environmental Management, 539 pp.

Leu, E., M. Daase, K.G. Schulz, A. Stuhr, and U. Riebesell. 2013. Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10:1,143–1,153, https://doi.org/10.5194/bg-10-1143-2013.

Maneja, R.H., A.Y. Frommel, H.I. Browman, C. Clemmese, A.J. Geffen, A. Folkvord, U. Piatowski, C.M.F. Durif, R. Bjelland, and A.B. Skiftesvik. 2013a. The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Marine Biology 160:1,963–1,972, https://doi.org/10.1007/s00227-012-2054-y.

Maneja, R.H., A.Y. Frommel, A.J. Geffen, A. Folkvord, U. Piatkowski, M.Y. Chang, and C. Clemmesen. 2013b. Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod Gadus morhua. Marine Ecology Progress Series 477:251–258, https://doi.org/10.3354/meps10146.

Marshall, D.J., R. Allen, and A. Crean. 2008. The ecological and evolutionary importance of maternal effects in the sea. Oceanography and Marine Biology 46:203–250, https://doi.org/10.1201/9781420065756.ch5.

Marshall, D.J., T.F. Bolton, and M.J. Keough. 2003. Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84:3,131–3,137, https://doi.org/10.1890/02-0311.

Martin, R.E., A. Quigg, and V. Podkovyrov. 2008. The evolution of ocean stoichiometry and diversification of the marine biosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 258:277–291.

McDonald, M.R., J.B. McClintock, C.D. Amsler, D. Rittschof, R.A. Angus, B. Orihuela, and K. Lutostanski. 2009. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Marine Ecology Progress Series 385:179–187, https://doi.org/10.3354/meps08099.

McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, S. Cudd, R.A. Feely, I.W. Jefferds, and others. 2015. Core principles of the California Current Acidification Network: Linking chemistry, physics, and ecological effects. Oceanography 28(2):160–169, https://doi.org/10.5670/oceanog.2015.39.

Morse, J.W., R.S. Arvidson, and A. Luttge. 2007. Calcium carbonate formation and dissolution. Chemical Reviews 107, 342e381, https://doi.org/10.1021/cr050358j.

Murray, C.S., A. Malvezzi, C.J. Gobler, and H. Baumann. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504:1–11, https://doi.org/10.3354/meps10791.

NMFS (National Marine Fisheries Service). 2014. Commercial Fisheries Statistics: Annual Commercial Landing Statistics. National Oceanic and Atmospheric Administration, http://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-landings.

Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on the calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.

Pansch, C., I. Schaub, J. Havenhand, and M. Wahl. 2014. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Global Change Biology 40:765–777, https://doi.org/10.1111/gcb.12478.

Pedersen, S.A., B.H. Hansen, D. Altin, and A.J. Olsen. 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater: Effects on survival and development. Biogeosciences 10:7,481–7,491, https://doi.org/10.5194/bg-10-7481-2013.

Pedersen, S.A., V.T. Våge, A.J. Olsen, K.M. Hammer, and D. Altin. 2014. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae). Journal of Toxicology and Environmental Health, Part A 77:535–549, https://doi.org/10.1080/15287394.2014.887421.

Pettigrew, N.R., J.H. Churchill, C.D. Janzen, L.J. Mangum, R.P. Signell, A.C. Thomas, D.W. Townsend, J.P. Wallinga, and J.H. Xue. 2005. The kinematic and hydrographic structure of the Gulf of Maine Coastal Current. Deep Sea Research Part II 52:2,369–2,391, https://doi.org/10.1016/j.dsr2.2005.06.033.

Pringle, J.M. 2006. Sources of variability in Gulf of Maine circulation, and the observations needed to model it. Deep Sea Research Part II 53:2,457–2,476, https://doi.org/10.1016/j.dsr2.2006.08.015.

Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1,131–1,134, https://doi.org/10.1130/G30210A.1.

Roman, C.T., N. Jaworski, F.T. Short, S. Findlay, and R.S. Warren. 2000. Estuaries of the northeastern United States: Habitat and land use signatures. Estuaries:23(6):743–764.

Rossoll, D., R. Bermudez, H. Hauss, K.G. Schulz, U. Riebesell, U. Sommer, and M. Winder. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7:e34737, https://doi.org/10.1371/journal.pone.0034737.

Saderne, V., and M. Wahl. 2013. Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2. PLoS ONE 8(7):e70455, https://doi.org/10.1371/journal.pone.0070455.

Salisbury, J., M. Green, C. Hunt, and J. Campbell. 2008. Coastal acidification by rivers: A threat to shellfish? Eos, Transactions American Geophysical Union 89:513–514, https://doi.org/10.1029/2008EO500001.

Salisbury, J., D. Vandemark, A. Mahadevan, B. Jonsson, C. Hunt, and W.R. McGillis. 2009. Episodic riverine influence on surface DIC in the coastal Gulf of Maine. Estuarine, Coastal and Shelf Science 82:108–118, https://doi.org/10.1016/j.ecss.2008.12.021.

Salisbury, J., D. Vandemark, C. Pilsklan, B. Cowie-Haskell, and K. Newhall. 2012. Monitoring Ocean Acidification in Deep Waters of the Stellwagen Bank National Marine Sanctuary: A Progress Report. US Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Stellwagen Bank National Marine Sanctuary.

Sargent, J., G. Bell, L. McEvoy, D. Tocher, and A. Estévez. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199, https://doi.org/10.1016/S0044-8486(99)00083-6.

Schneider, D.W., J.A. Stoeckel, C.R. Rehmann, K.D. Blodgett, R.E. Sparks, and D.K. Padilla. 2003. A developmental bottleneck in dispersing larvae: Implications for spatial population dynamics. Ecology Letters 6:352–360, https://doi.org/10.1046/j.1461-0248.2003.00443.x.

Shadwick, E.H., H. Thomas, K. Azetsu-Scott, B.J.W. Greenan, E. Head, and E. Horne. 2011. Seasonal variability of dissolved inorganic carbon and surface water pCO2 in the Scotian Shelf region of the Northwestern Atlantic. Marine Chemistry 124:23–37, https://doi.org/10.1016/j.marchem.2010.11.004.

Signorini, S.R., A. Mannino, R.G. Najjar Jr., M.A.M. Friedrichs, W.-J. Cai, J. Salisbury, Z.A. Wang, H. Thomas, and E. Shadwick. 2013. Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast. Journal of Geophysical Research 118:5,439–5,460, https://doi.org/10.1002/jgrc.20369.

Steneck, R.S., T.P. Hughes, J.E. Cinner, W.N. Adger, S.N. Arnold, F. Berkes, S.A. Boudreau, K. Brown, C. Folke, L. Gunderson, and others. 2011. Creation of a gilded trap by the high economic value of the Maine lobster fishery. Conservation Biology 25:904–912, https://doi.org/10.1111/j.1523-1739.2011.01717.x.

Sterner, R.W., and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton University Press, Princeton, NJ, 464 pp.

Strong, A.L., K.J. Kroeker, L.T. Teneva, L.A. Mease, and R.P. Kelly. 2014. Ocean acidification 2.0: Managing our changing coastal ocean chemistry. BioScience 64:581–592, https://doi.org/10.1093/biosci/biu072.

Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, T. Newberger, and C. Sweeney. 2014. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean. ORNL/CDIAC-160, NDP-094. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, 41 pp.

Talmage, S.C., and C.J. Gobler. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography 54:2,072–2,080, https://doi.org/10.4319/lo.2009.54.6.2072.

Talmage, S.C., and C.J. Gobler. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107:17,246–17,251, https://doi.org/10.1073/pnas.0913804107.

Thomas, H., and B. Schneider. 1999. The seasonal cycle of carbon dioxide in Baltic Sea surface waters. Journal of Marine Systems 22:53–67, https://doi.org/10.1016/S0924-7963(99)00030-5.

Townsend, D.W. 1991. Influences of oceanographic processes on the biological productivity of the Gulf of Maine. Reviews in Aquatic Sciences 5:211–230.

Vadeboncoeur, M.A., S.P. Hamburg, and D. Pryor. 2010. Modeled nitrogen loading to Narragansett Bay: 1850 to 2015. Estuaries and Coasts 33:1,113–1,127, https://doi.org/10.1007/s12237-010-9320-3.

Waldbusser, G.G., B. Hales, C.K. Langdon, B.A. Haley, P. Schrader, E.L. Brunner, M.W. Gray, C.A. Miller, and I. Gimenez. 2015. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5:273–280, https://doi.org/10.1038/nclimate2479.

Waldbusser, G.G., and J.E. Salisbury. 2014. Ocean acidification in the coastal zone from an organism’s perspective: Multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 2014. 6:221-47, https://doi.org/10.1146/annurev-marine-121211-172238.

Wallace, R.B., H. Baumann, J.S. Grear, R.C. Aller, and C.J. Gobler. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148:1–13, https://doi.org/10.1016/j.ecss.2014.05.027.

Wang, Z.A., R. Wanninkhof, W.-J. Cai, R.H. Byrne, X. Hu, T.-H. Peng, and W.-J. Huang. 2013. The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography 58:325–342, https://doi.org/10.4319/lo.2013.58.1.0325.

White, M.M., D.C. McCorkle, L.S. Mullineaux, and A.L. Cohen. 2013. Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8:e61065, https://doi.org/10.1371/journal.pone.0061065.

White, M.M., L.S. Mullineaux, D.C. McCorkle, and A.L. Cohen. 2014. Elevated pCO2 exposure during fertilization of the bay scallop Argopecten irradians reduces larval survival but not subsequent shell size. Marine Ecology Progress Series 498:173–186, https://doi.org/10.3354/meps10621.

Widdicombe, S., and H.R. Needham. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Marine Ecology Progress Series 341:111–122, https://doi.org/10.3354/meps341111.

Wilson, S.G., and T.R. Fischetti. 2010. Coastline Population Trends in the United States: 1960 to 2008. United States Department of Commerce, Economics and Statistics Administration, United States Census Bureau, Report P25-1139, Washington, DC, 28 pp.

Yildiz, G., L.C. Hofmann, K. Bischof, and S. Dere. 2013. Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2. Botanica Marina 56:161–168, https://doi.org/10.1515/bot-2012-0216.

Zeebe, R. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences 40:141–165, https://doi.org/10.1146/annurev-earth-042711-105521.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.