Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 04

View Issue TOC
Volume 29, No. 4
Pages 160 - 169

OpenAccess

Exploring the “Sharkcano”: Biogeochemical Observations of the Kavachi Submarine Volcano (Solomon Islands)

By Brennan T. Phillips , Matthew Dunbabin, Corey Howell, Alex DeCiccio, Ashton Flinders, Katherine A. Kelley, Jarrod J. Scott, Simon Albert, Steven Carey, Rami Tsadok, and Alistair Grinham 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

An expedition to the Kavachi submarine volcano (Solomon Islands) in January 2015 was serendipitously timed with a rare lull in volcanic activity that permitted access to the inside of Kavachi’s active crater and its flanks. The isolated location of Kavachi and its explosive behavior normally restrict scientific access to the volcano’s summit, limiting previous observational efforts to surface imagery and peripheral water-column data. This article presents medium-resolution bathymetry of the main peak along with benthic imagery, biological observations of multiple trophic levels living inside the active crater, petrological and geochemical analysis of samples from the crater rim, measurements of water temperature and gas flux over the summit, and descriptions of the hydrothermal plume structure. A second peak was identified to the southwest of the main summit and displayed evidence of diffuse-flow venting. Microbial samples collected from the summit indicate chemosynthetic populations dominated by sulfur-reducing ε-proteobacteria. Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes and the extreme environments in which large marine animals can exist.

Citation

Phillips, B.T., M. Dunbabin, B. Henning, C. Howell, A. DeCiccio, A. Flinders, K.A. Kelley, J.J. Scott, S. Albert, S. Carey, R. Tsadok, and A. Grinham. 2016. Exploring the “Sharkcano”: Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands). Oceanography 29(4):160–169, https://doi.org/10.5670/oceanog.2016.85.

Supplementary Materials

Figure S1. Bathymetric map of Kavachi and the summit crater (inset, lower right) showing locations of single-beam echosounder returns used to create the plot (black dots).  See the Methods section for a detailed description of how the bathymetric data was processed.
> 1.3 MB pdf

Table S1. Exploring the “Sharkcano”: Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands).
> 48 KB pdf
> 52 KB Excel file

Video S1. Edited highlights of a baited autonomous camera dropped into the summit crater of Kavachi.  The entire descent from 0-50 m depth is shown, followed by representative clips of the reef fish, sharks, and gelatinous zooplankton that were observed. Note the distinct orange coloration and high turbidity of seawater inside the crater at depth.
> Oceanography YouTube Channel

References
    Baker, E.T., G.J. Massoth, C.E. de Ronde, J.E. Lupton, and B.I. McInnes. 2002. Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands, May 2000. Geology 30(11):975–978, https://doi.org/10.1130/​0091-7613(2002)030<0975:OASOAO>2.0.CO;2.
  1. Baker, E.T., A.J. Resing, R.M. Haymon, V. Tunnicliffe, J.W. Lavelle, F. Martinez, V. Ferrini, S.L. Walker, and K. Nakamura. 2016. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth and Planetary Science Letters 449:186–196, https://doi.org/10.1016/j.epsl.2016.05.031.
  2. Bedo, A.W., J.L. Acuna, D. Robins, and R.P. Harris. 1993. Grazing in the micron and the sub-​micron particle size range: The case of Oikopleura dioica (Appendicularia). Bulletin of Marine Science 53(1):2–14.
  3. Bennett, S.A., M. Coleman, J.A. Huber, E. Reddington, J.C. Kinsey, C. McIntyre, J.S. Seewald, and C.R. German. 2013. Trophic regions of a hydrothermal plume dispersing away from an ultramafic-hosted vent-system: Von Damm vent-site, Mid-Cayman Rise. Geochemistry, Geophysics, Geosystems 14(2):317–327, https://doi.org/10.1002/ggge.20063.
  4. Burd, B.J., and R.E. Thomson. 2015. The importance of hydrothermal venting to water-column secondary production in the Northeast Pacific. Deep Sea Research Part II 121:85–94, https://doi.org/​10.1016/​j.dsr2.2015.04.014.
  5. Burton, M.R., G.M. Sawyer, and D. Granieri. 2013. Deep carbon emissions from volcanoes. Reviews in Mineralogy & Geochemistry 75:323–354, https://doi.org/10.2138/rmg.2013.75.11.
  6. Carey, S., P. Nomikou, K.C. Bell, M. Lilley, J. Lupton, C.N. Roman, E. Stathopoulou, K. Bejelou, and R. Ballard. 2013. CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41(9):1,035–1,038, https://doi.org/10.1130/G34286.1.
  7. Chadwick, J., M. Perfit, B. McInnes, G. Kamenov, T. Plank, I. Jonasson, and C. Chadwick. 2009. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth and Planetary Science Letters 279(3):293–302, https://doi.org/10.1016/​j.epsl.2009.01.001.
  8. Chadwick, W.W., R.W. Embley, E.T. Baker, J.A. Resing, J.E. Lupton, K.V. Cashman, R.P. Dziak, V. Tunnicliffe, D.A. Butterfield, and Y. Tamura. 2010. Northwest Rota-1 Seamount. Oceanography 23(1):182–183, https://doi.org/10.5670/oceanog.2010.82.
  9. Chadwick, W.W., S.L. Nooner, D.A. Butterfield, and M.D. Lilley. 2012. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nature Geoscience 5(7):474–477, https://doi.org/​10.1038/ngeo1464.
  10. Christopoulou, M.E., T.J. Mertzimekis, P. Nomikou, D. Papanikolaou, S. Carey, and M. Mandalakis. 2016. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece). Geo-Marine Letters 36(1):15–24, https://doi.org/10.1007/s00367-015-0429-z
  11. Devine, J.D., and H. Sigurdsson. 1995. Petrology and eruption styles of Kick’em-Jenny submarine volcano, Lesser Antilles island arc. Journal of Volcanology and Geothermal Research 69(1):35–58, https://doi.org/​10.1016/​0377-0273(95)00025-9.
  12. Dick, G.J., K. Anantharaman, B.J. Baker, M. Li, D.C. Reed, and C.S. Sheik. 2013. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats. Frontiers in Microbiology 4:1–16, https://doi.org/10.3389/fmicb.2013.00124.
  13. Dixson, D.L., A.R. Jennings, J. Atema, and P.L. Munday. 2015. Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology 21(4):1,454–1,462, https://doi.org/10.1111/gcb.12678.
  14. Dunbabin, M. 2016. Autonomous greenhouse gas sampling using multiple robotic boats. Pp. 17–30 in Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 113, D. Wettergreen, and T. Barfoot, eds, Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-27702-8_2
  15. Exon, N.F., and R.W. Johnson. 1986. The elusive Cook volcano and other submarine forearc volcanoes in the Solomon Islands. BMR Journal of Australian Geology and Geophysics 10:77–83.
  16. Ferrari, M.C., D.L. Dixson, P.L. Munday, M.I. McCormick, M.G. Meekan, A. Sih, and D.P. Chivers. 2011. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: Implications for climate change projections on marine communities. Global Change Biology 17(9):2,980–2,986, https://doi.org/10.1111/j.1365-2486.2011.02439.x.
  17. Flinders, A.F., L.A. Mayer, B.A. Calder, and A.A. Armstrong. 2014. Evaluation of Arctic multibeam sonar data quality using nadir crossover error analysis and compilation of a full-resolution data product. Computers and Geosciences 66:228–236, https://doi.org/​10.1016/​j.cageo.2014.02.003.
  18. Friedlander, A.M., J.E. Caselle, E. Ballesteros, E.K. Brown, A. Turchik, and E. Sala. 2014. The real bounty: Marine biodiversity in the Pitcairn Islands. PLoS ONE 9(6):e100142, https://doi.org/10.1371/​journal.pone.0100142.
  19. Field, C.B., V.R. Barros, K.J. Mach, M.D. Mastrandrea, M. van Aalst, W.N. Adger, D.J. Arent, J. Barnett, R. Betts, T.E. Bilir, and others. 2014. Technical summary. Pp. 35–94 in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  20. Gorsky, G., M.J. Chrétiennot-Dinet, J. Blanchot, and I. Palazzoli. 1999. Picoplankton and nanoplankton aggregation by appendicularians: Fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. Journal of Geophysical Research: Oceans 104(C2):3,381–3,390, https://doi.org/​10.1029/98JC01850.
  21. Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(3):96–99, https://doi.org/10.1038/nature07051.
  22. Heinrich, D.D., J.L. Rummer, A.J. Morash, S.A. Watson, C.A. Simpfendorfer, M.R. Heupel, and P.L. Munday. 2014. A product of its environment: The epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. Conservation Physiology 2(1):cou047, https://doi.org/10.1093/conphys/cou047.
  23. Heinrich, D.D., S.A. Watson, J.L. Rummer, S.J. Brandl, C.A. Simpfendorfer, M.R. Heupel, and P.L. Munday. 2015. Foraging behaviour of the epaulette shark Hemiscyllium ocellatum is not affected by elevated CO2. ICES Journal of Marine Science 73(3):633–640, https://doi.org/10.1093/icesjms/fsv085.
  24. Hess, S., A.S. Wenger, T.D. Ainsworth, and J.L. Rummer. 2015. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome. Scientific Reports 5:10561, https://doi.org/​10.1038/srep10561.
  25. Hofmann, A.W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90(3):297–314, https://doi.org/​10.1016/0012-821X(88)90132-X.
  26. Johansen, J.L., and G.P. Jones. 2011. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology 17(9):2,971–2,979, https://doi.org/10.1111/j.1365-2486.2011.02436.x.
  27. Johnson, R.W., and D. Tuni. 1987. Kavachi, an active forearc volcano in the western Solomon Islands: Reported eruptions between 1950 and 1982. Pp. 89–112 in Marine Geology, Geophysics and Geochemistry of the Woodlark Basin–Solomon Islands, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, Volume 7. B. Taylor and N.F. Exon, eds, Houston, Texas.
  28. Kelley, K.A., T. Plank, J. Ludden, and H. Staudigel. 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 4(6):1–21, https://doi.org/10.1029/2002GC000435.
  29. Kilias, S.P., P. Nomikou, D. Papanikolaou, P.N. Polymenakou, A. Godelitsas, A. Argyraki, S. Carey, P. Gamaletsos, T.J. Mertzimekis, E. Stathopoulou, and others. 2013. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Scientific Reports 3:2421, https://doi.org/10.1038/srep02421.
  30. König, S., S. Schuth, C. Münker, and C. Qopoto. 2007. The role of slab melting in the petrogenesis of high-Mg andesites: Evidence from Simbo Volcano, Solomon Islands. Contributions to Mineralogy and Petrology 153(1):85–103, https://doi.org/10.1007/s00410-006-0136-x.
  31. Lesser, M.P., and M. Slattery. 2015. Picoplankton consumption supports the ascidian Cnemidocarpa verrucosa in McMurdo Sound, Antarctica. Marine Ecology Progress Series 525:117–126, https://doi.org/10.3354/meps11215.
  32. Lindsay, D., M. Umetsu, M. Grossmann, H. Miyake, and H. Yamamoto. 2015. The gelatinous macroplankton community at the Hatoma Knoll hydrothermal vent. Pp. 639–666 in Subseafloor Biosphere Linked to Hydrothermal Systems. J.-i. Ishibashi, K. Okino, and M. Sunamura, eds, Springer Japan.
  33. MacAvoy, S.E., R.S. Carney, C.R. Fisher, and S.A. Macko. 2002. Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Marine Ecology Progress Series 225:65–78, https://doi.org/10.3354/meps225065.
  34. Mann, P., F.W. Taylor, M.B. Lagoe, A. Quarles, and G. Burr. 1998. Accelerating late Quaternary uplift of the New Georgia Island Group (Solomon island arc) in response to subduction of the recently active Woodlark spreading center and Coleman seamount. Tectonophysics 295(3):259–306, https://doi.org/10.1016/S0040-1951(98)00129-2.
  35. Munday, P.L., N.E. Crawley, and G.E. Nilsson. 2009. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series 388:235–242, https://doi.org/10.3354/meps08137.
  36. Munday, P.L., A.J. Cheal, D.L. Dixson, J.L. Rummer, and K.E. Fabricius. 2014. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change 4(6):487–492, https://doi.org/10.1038/nclimate2195.
  37. NASA Earth Observatory. 2014. Evidence of an Underwater Eruption at Kavachi, http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=83025. 
  38. Niu, Y., and R. Batiza. 1997. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters 148(3):471–483, https://doi.org/10.1016/S0012-821X(97)00048-4.
  39. Resing, J.A., G. Lebon, E.T. Baker, J.E. Lupton, R.W. Embley, G.J. Massoth, W.W. Chadwick, and C.E.J. De Ronde. 2007. Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Economic Geology 102(6):1,047–1,061, https://doi.org/​10.2113/gsecongeo.102.6.1047.
  40. Resing, J.A., K.H. Rubin, R.W. Embley, J.E. Lupton, E.T. Baker, R.P. Dziak, T. Baumberger, M.D. Lilley, J.A. Huber, T.M. Shank, and others. 2011. Active submarine eruption of boninite in the northeastern Lau Basin. Nature Geoscience 4(11):799–806, https://doi.org/10.1038/ngeo1275.
  41. Ribes, M., R. Coma, M.J. Atkinson, and R.A. Kinzie III. 2003. Particle removal by coral reef communities: Picoplankton is a major source of nitrogen. Marine Ecology Progress Series 257:13–23, https://doi.org/10.3354/meps257013.
  42. Rogers, A. D. 1993. The biology of seamounts. Advances in Marine Biology 30:305–350.
  43. Santana-Casiano, J.M., M. González-Dávila, E. Fraile-Nuez, D. De Armas, A.G. González, J.F. Domínguez-Yanes, and J. Escánez. 2013. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Scientific Reports 3:1140, https://doi.org/10.1038/srep01140.
  44. Schlaff, A.M., M.R. Heupel, and C.A. Simpfendorfer. 2014. Influence of environmental factors on shark and ray movement, behaviour and habitat use: A review. Reviews in Fish Biology and Fisheries 24(4):1,089–1,103, https://doi.org/10.1007/s11160-014-9364-8.
  45. Schuth, S., A. Rohrbach, C. Münker, C. Ballhaus, D. Garbe-Schönberg, and C. Qopoto. 2004. Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology 148(3):288–304, https://doi.org/10.1007/s00410-004-0604-0.
  46. Schuth, S., C. Münker, S. König, C. Qopoto, S. Basi, D. Garbe-Schönberg, and C. Ballhaus. 2009. Petrogenesis of lavas along the Solomon Island Arc, SW Pacific: Coupling of compositional variations and subduction zone geometry. Journal of Petrology 50(5):781–811, https://doi.org/10.1093/petrology/egp019.
  47. Sigurdsson, H., S. Carey, M. Alexandri, G. Vougioukalakis, K. Croff, C. Roman, D. Sakellariou, C. Anagnostou, G. Rousakis, C. Loakim, and A. Gogou. 2006. Marine investigations of Greece’s Santorini volcanic field. Eos, Transactions American Geophysical Union 87(34):337–339, https://doi.org/​10.1029/2006EO340001.
  48. Sinton, C.W., and R.A. Duncan. 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology 92:836–842, https://doi.org/10.2113/gsecongeo.92.7-8.836.
  49. Staudigel, H., S.R. Hart, A. Pile, B.E. Bailey, E.T. Baker, S. Brooke, D.P. Connelly, L. Haucke, C.R. German, I. Hudson, and others. 2006. Vailulu’u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America 103(17):6,448–6,453, https://doi.org/10.1073/pnas.0600830103.
  50. Stocks, K.I., and P.J. Hart. 2007. Biogeography and biodiversity of seamounts. Pp. 255–281 in Seamounts: Ecology, Fisheries, and Conservation. Blackwell Fisheries and Aquatic Resources Series, Blackwell, Oxford, UK.
  51. Sun, S.S., and W.F. McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications 42(1):313–345, https://doi.org/​10.1144/GSL.SP.1989.042.01.19.
  52. Troedsson, C., J.M. Bouquet, C.M. Lobon, A. Novac, J.C. Nejstgaard, S. Dupont, S. Bosak, H.H. Jakobsen, N. Romanova, L.M. Pankoke, and others. 2013. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: A mesocosm study. Marine Biology 160(8):2,175–2,187, https://doi.org/10.1007/s00227-012-2137-9.
  53. Vroom, P.S., and B.J. Zgliczynski. 2011. Effects of volcanic ash deposits on four functional groups of a coral reef. Coral Reefs 30(4):1,025–1,032, https://doi.org/10.1007/s00338-011-0793-8.
  54. Walker, S.L., E.T. Baker, J.A. Resing, K. Nakamura, and P. McLain. 2007. A new tool for detecting hydrothermal plumes: An ORP sensor for the PMEL MAPR. In AGU Fall Meeting Abstracts 1:753.
  55. Walker, S.L., E.T. Baker, J.A. Resing, W.W. Chadwick, G.T. Lebon, J.E. Lupton, and S.G. Merle. 2008. Eruption-fed particle plumes and volcaniclastic deposits at a submarine volcano: NW Rota-1, Mariana Arc. Journal of Geophysical Research 113, B08S11, https://doi.org/10.1029/2007JB005441.
  56. Wenger, A.S., J.L. Johansen, and G.P. Jones. 2011. Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs 30(4):879–887, https://doi.org/10.1007/s00338-011-0773-z.
  57. Wenger, A.S., M.I. McCormick, I.M. McLeod, and G.P. Jones. 2013. Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32(2):369–374, https://doi.org/10.1007/s00338-012-0991-z.
  58. Wunderman, R., ed. 2007. Global Volcanism Program, 2007. Report on Kavachi (Solomon Islands). Bulletin of the Global Volcanism Network 32:7. Smithsonian Institution, Washington, DC, https://doi.org/​10.5479/si.GVP.BGVN200707-255060.
  59. Yanagawa, K., Y. Morono, D. de Beer, M. Haeckel, M. Sunamura, T. Futagami, T. Hoshino, T. Terada, K. Nakamura, T. Urabe, and others. 2013. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes. The ISME Journal 7(3):555–567, https://doi.org/10.1038/ismej.2012.124.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.