Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 04

View Issue TOC
Volume 32, No. 4
Pages 136 - 145

OpenAccess

Energy Transfer in the Western Tropical Pacific

By Sarah E. Zedler , Brian S. Powell, Bo Qiu, and Daniel L. Rudnick 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

We aim to understand the surface kinetic energy cascade across a wide range of length scales in the western tropical Pacific (WTP) and the influence of both climatic dynamics and topography using a high-resolution (2.5 km) model nested within a coarser (8 km) state-estimate model. The period of interest includes the development and realization of the 2014–2015 El Niño. The energy cascade in the WTP is similar to that of the extratropics, with simultaneous dual inverse and forward cascades of kinetic energy to larger and smaller scales, with the strongest source of energy near the local baroclinic Rossby radius. We find that topography enhances the strength of the mean surface cascades in both forward and inverse directions, altering the energy transfer in the WTP on both long timescales important for determining the mean distribution of kinetic energy across a range of length scales and short timescales relevant for dynamical prediction.

Citation

Zedler, S.E., B.S. Powell, B. Qiu, and D.L. Rudnick. 2019. Energy transfer in the western tropical Pacific. Oceanography 32(4):136–145, https://doi.org/10.5670/oceanog.2019.419.

References
    Arbic, B., K. Polzin, R. Scott, J. Richman, and J. Shriver. 2013. On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. Journal of Physical Oceanography 43:283–300, https://doi.org/10.1175/JPO-D-11-0240.1.
  1. Arruda, W., and D. Nof. 2003. The Mindanao and Halmahera eddies: Twin eddies induced by nonlinearities. Journal of Physical Oceanography 33:2,815–2,830, https://doi.org/10.1175/1520-0485(2003)033​<2815:TMAHEE>2.0.CO;2.
  2. Bathen, K. 1972. On the seasonal changes in the depth of the mixed layer in the North Pacific Ocean. Journal of Geophysical Research 77:7,138–7,150, https://doi.org/10.1029/JC077i036p07138.
  3. Bell, T. 1975. Topographically generated internal waves in the open ocean. Journal of Geophysical Research 80:320–327, https://doi.org/10.1029/JC080i003p00320.
  4. Bleck, R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling 4:55–88, https://doi.org/10.1016/S1463-5003(01)00012-9.
  5. Boccaletti, G., R. Ferrari, and B. Fox-Kemper. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography 37:2,228–2,250, https://doi.org/10.1175/JPO3101.1.
  6. Brüggemann, N., and C. Eden. 2015. Routes to dissipation under different dynamical conditions. Journal of Physical Oceanography 45:2,149–2,168, https://doi.org/10.1175/JPO-D-14-0205.1.
  7. Bühler, O., J. Callies, and R. Ferrari. 2014. Wave-vortex decomposition of one-dimensional ship-track data. Journal of Fluid Mechanics 756:1,007–1,026, https://doi.org/10.1017/jfm.2014.488.
  8. Callies, J., and R. Ferrari. 2013. Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). Journal of Physical Oceanography 43:2,456–2,474, https://doi.org/10.1175/JPO-D-13-063.1.
  9. Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin. 2008a. Mesoscale to submesoscale transition in the California current system: Part I: Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography 38:29–43, https://doi.org/10.1175/2007JPO3671.1.
  10. Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin. 2008b. Mesoscale to submesoscale transition in the California Current System: Part III: Energy balance and flux. Journal of Physical Oceanography 38:2,256–2,269, https://doi.org/​10.1175/2008JPO3810.1.
  11. Chang, P. 1993. Seasonal cycle of sea surface temperature and mixed layer heat budget in the tropical Pacific Ocean. Geophysical Research Letters 20(19):2,079–2,082, https://doi.org/​10.1029/93GL02374.
  12. Chelton, D., R. DeSzoeke, M. Schlax, K. Naggar, and N. Siwertz. 1998. Geographic variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography 28:433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.
  13. Courtier, P. 1997. Dual formulation of four-dimensional variational assimilation. Quarterly Journal of the Royal Meteorological Society B 75:2,449–2,461, https://doi.org/10.1002/qj.49712354414.
  14. Cummings, J.A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society 131(613):3,583–3,604, https://doi.org/10.1256/qj.05.105.
  15. Dong, C., and J. McWilliams. 2007. A numerical study of island wakes in the Southern California Bight. Continental Shelf Research 27(9):1,233–1,248, https://doi.org/10.1016/j.csr.2007.01.016.
  16. Egbert, G., and S. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19:183–204, https://doi.org/10.1175/1520-0426(2002)019​<0183:EIMOBO>2.0.CO;2.
  17. Emery, W., W. Lee, and L. Magaard. 1984. Geographic and seasonal distributions of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. Journal of Physical Oceanography 14:294–317, https://doi.org/10.1175/1520-0485(1984)014​<0294:GASDOB>2.0.CO;2.
  18. Fu, L.-L., and G. Flierl. 1980. Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dynamics of Atmospheres and Oceans 4:219–246, https://doi.org/​10.1016/0377-0265(80)90029-9.
  19. Holloway, P., and M. Merrifield. 1999. Internal tide generation by seamounts, ridges, and islands. Journal of Geophysical Research 104(C11):25,937–25,951, https://doi.org/10.1029/1999JC900207.
  20. Huppert, H., and K. Bryan. 1976. Topographically generated eddies. Deep-Sea Research and Oceanographic Abstracts 23:655–679, https://doi.org/​10.1016/S0011-7471(76)80013-7.
  21. Janekovic, I., and B. Powell. 2012. Analysis of imposing tidal dynamics to nested numerical models. Continental Shelf Research 34:30–40, https://doi.org/​10.1016/j.csr.2011.11.017.
  22. Johnson, E.S., L.A. Regier, and R.A. Knox. 1988. A study of geostrophy in tropical Pacific Ocean currents during the NORPAX Tahiti Shuttle using a shipboard Doppler acoustic current profiler. Journal of Physical Oceanography 18:708–723, https://doi.org/10.1175/1520-0485(1988)018<0708:ASOGIT>2.0.CO;2.
  23. Johnson, G.C., B.M. Sloyan, W.S. Kessler, and K.E. McTaggert. 2002. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Progress in Oceanography 52(1):31–61, https://doi.org/10.1016/S0079-6611(02)00021-6.
  24. Kashino, Y., N. Espana, F. Syamsudin, K. Richards, T. Jensen, P. Dutrieux, and A. Ishida. 2009. Observations of the North Equatorial Current, Mindanao Current, and Kuroshio current system during the 2006/07 El Niño and 2007/08 La Niña. Journal of Oceanography 65:325–333, https://doi.org/​10.1007/s10872-009-0030-z.
  25. Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, and others. 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society 82:247–267, https://doi.org/10.1175/1520-0477(2001)082​<0247:TNNYRM>2.3.CO;2.
  26. Kjellsson, J., and L. Zanna. 2017. The impact of horizontal resolution on energy transfers in global ocean models. Fluids 2(3):45, https://doi.org/​10.3390/fluids2030045.
  27. Klein, P., G. Lapeyre, G. Roullet, S. LeGentil, and H. Sasaki. 2011. Ocean turbulence at meso and submesoscales: Connection between surface and interior dynamics. Geophysical and Astrophysical Fluid Dynamics 105(4–5):421–437, https://doi.org/​10.1080/03091929.2010.532498.
  28. Kobashi, F., and A. Kubokawa. 2012. Review on North Pacific subtropical countercurrents and subtropical fronts: Role of mode waters in ocean circulation and climate. Journal of Oceanography 68(1):21–43, https://doi.org/10.1007/s10872-011-0083-7.
  29. LaCasce, J.H. 2017. The prevalence of oceanic surface modes. Geophysical Research Letters 44:11,097–11,105, https://doi.org/​10.1002/2017GL075430.
  30. Lagerloef, G.S.E., G.T. Mitchum, R.B. Lukas, and P. Niiler. 1999. Tropical Pacific near-​surface currents estimated from altimeter, wind, and drifter data. Journal of Geophysical Research 104(C10):23,313–23,326, https://doi.org/​10.1029/1999JC900197.
  31. Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a non-local boundary layer parameterization. Reviews of Geophysics 32:363–403, https://doi.org/​10.1029/94RG01872.
  32. Lindborg, E. 2006. The energy cascade in a strongly stratified fluid. Journal of Fluid Mechanics 550:207–242, https://doi.org/10.1017/S0022112005008128.
  33. Marchesiello, P., X. Capet, C. Menkes, and S. Kennan. 2011. Submesoscale dynamics in tropical instability waves. Ocean Modelling 39:31–46, https://doi.org/​10.1016/j.ocemod.2011.04.011.
  34. Marino, R., P. Mininni, D. Rosenberg, and A. Pouquet. 2013. Inverse cascades in rotating stratified turbulence: Fast growth of large scales. European Physical Letters 102(4), https://doi.org/​10.1209/​0295-5075/102/44006.
  35. Marino, R., A. Pouquet, and D. Rosenberg. 2015. Resolving the paradox of oceanic large-scale balance and small-scale mixing. Physical Review Letters 114:114504, https://doi.org/10.1103/PhysRevLett.114.114504.
  36. May, D., M. Parmeter, D. Olszewski, and B. McKenzie. 1998. Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bulletin of the American Meteorological Society 79(3):397–407, https://doi.org/10.1175/1520-0477(1998)079​<0397:OPOSSS>2.0.CO;2.
  37. McPhaden, M. 1995. The Tropical Atmosphere Ocean Array is completed. Bulletin of the American Meteorological Society 76:739–741, https://doi.org/​10.1175/1520-0477-76.5.739.
  38. Nikurashin, M., and R. Ferrari. 2010. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. Journal of Physical Oceanography 40:1,055–1,074, https://doi.org/​10.1175/2009JPO4199.1.
  39. Oka, E., and K. Ando. 2004. Stability of temperature and conductivity sensors of Argo profiling floats. Journal of Oceanography 60:253–258, https://doi.org/​10.1023/B:JOCE.​0000038331.​10108.79.
  40. Philander, S., W. Hurlin, and A. Seigel. 1987. Simulation of the seasonal cycle of the tropical Pacific Ocean. Journal of Physical Oceanography 17(11):1,986–2,002, https://doi.org/​10.1175/​1520-​0485​(1987)017​<1986:​SOTSCO>​2.0.CO;2.
  41. Pouquet, A., and R. Marino. 2013. Geophysical turbulence and the duality of the energy flow across scales. Physical Review Letters 111:234501, https://doi.org/10.1103/PhysRevLett.111.234501.
  42. Qiu, B., and R. Lukas. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research 101:12,315–12,330, https://doi.org/​10.1029/95JC03204.
  43. Qiu, B. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography 29:2,471–2,486, https://doi.org/10.1175/1520-0485(1999)029​<2471:SEFMOT>2.0.CO;2.
  44. Qiu, B., and S. Chen. 2010. Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography 40:213–225, https://doi.org/​10.1175/2009JPO4285.1.
  45. Qiu, B., T. Nakano, S. Chen, and P. Klein. 2017. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications 8:14055, https://doi.org/​10.1038/ncomms14055.
  46. Qu, T., T. Chiang, C. Wu, P. Dutrieux, and D. Hu. 2012. Mindanao Current/Undercurrent in an eddy-​resolving GCM. Journal of Geophysical Research 117(C6), https://doi.org/10.1029/2011JC007838.
  47. Reverdin, G., C. Frankingoul, E. Kestenare, and M. McPhaden. 1994. Seasonal variability in the surface currents of the equatorial Pacific. Journal of Geophysical Research 99(C10):20,323–20,344, https://doi.org/10.1029/94JC01477.
  48. Reznik, G., and T. Tsybaneva. 1999. Planetary waves in a stratified ocean of variable depth: Part I. Two-layer model. Journal of Fluid Mechanics 388:115–145, https://doi.org/10.1017/S0022112099004875.
  49. Rhines, P., and F. Bretherton. 1973. Topographic Rossby waves in a rough-bottomed ocean. Journal of Fluid Mechanics 61:583–607, https://doi.org/​10.1017/S002211207300087X.
  50. Rhines, P. 1975. Waves and turbulence on a beta-plane. Journal of Fluid Mechanics 69:417–443, https://doi.org/10.1017/S0022112075001504.
  51. Roullet, G., and P. Klein. 2010. Cyclone-anticyclone asymmetry in geophysical turbulence. Physical Review Letters 104:218501, https://doi.org/10.1103/PhysRevLett.104.218501.
  52. Rudnick, D. 2001. On the skewness of vorticity in the upper ocean. Geophysical Research Letters 28:2,045–2,048, https://doi.org/​10.1029/2000GL012265.
  53. Salmon, R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.
  54. Schönau, M., and D. Rudnick. 2015. Glider observations of the North Equatorial Current in the western tropical Pacific. Journal of Geophysical Research 120:3,586–3,606, https://doi.org/​10.1002/2014JC010595.
  55. Schönau, M., and D. Rudnick. 2017. Mindanao Current and Undercurrent: Thermohaline structure and transport from repeat glider observations. Journal of Physical Oceanography 47:2,055–2,075, https://doi.org/10.1175/JPO-D-16-0274.1.
  56. Schott, F. 1977. On the energetics of baroclinic tides in the North Atlantic. Annual Reviews of Geophysics 33:41–62.
  57. Scott, R., and F. Wang. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography 45:1,650–1,666, https://doi.org/​10.1175/JPO2771.1.
  58. Shchepetkin, A., and J. McWilliams. 2005. The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-​following-​coordinate oceanic model. Ocean Modelling 9:347–404, https:/doi.org/10.1016/​j.ocemod.2004.08.002.
  59. Shchepetkin, A., and J. McWilliams. 2008. Correction and commentary for “Ocean forecasting in terrain-​following-coordinates: Formulation and skill assessment of the regional ocean modeling system.” Journal of Computational Physics 227:8,985–9,000, https:/doi.org/10.1016/​j.jcp.2009.09.002.
  60. Shcherbina, A.Y., E. D’Asaro, C.M. Lee, J.M. Klymak, and M.J. Molemaker, and J.C. McWilliams. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters 40:4,706–4,711, https://doi.org/10.1002/grl.50919.
  61. Sverdrup, H. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Geophysics 33:318–326, https://doi.org/10.1073/pnas.33.11.318.
  62. Theiss, J. 2006. A generalized Rhines effect and storms on Jupiter. Geophysical Research Letters 33, L08809, https://doi.org/10.1029/​2005GL025379.
  63. Trossman, D., B. Arbic, D. Straub, J. Richman, E. Chassignet, A. Wallcraft, and X. Xu. 2017. The role of rough topography in mediating impacts of bottom drag in eddying ocean circulation models. Journal of Physical Oceanography 47:1,941–1,958, https://doi.org/10.1175/JPO-D-16-0229.1.
  64. Wang, F., Y. Li, and J. Wang. 2016. Intraseasonal variability of the surface zonal currents in the western tropical Pacific Ocean: Characteristics and mechanisms. Journal of Physical Oceanography 46:3,639–3,660, https://doi.org/10.1175/JPO-D-16-0033.1.
  65. Wyrtki, K., and R. Kendall. 1967. Transports of the Pacific Equatorial Countercurrent. Journal of Geophysical Research 72(8):2,073–2,076, https://doi.org/10.1029/JZ072i008p02073.
  66. Yu, Z., J.M. Jr., W. Kessler, and K. Kelly. 2000. Influence of equatorial dynamics on the Pacific North Equatorial Countercurrent. Journal of Physical Oceanography 30:3,179–3,190, https://doi.org/10.1175/1520-0485(2000)030​<3179:IOEDOT>2.0.CO;2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.