Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 196 - 208

OpenAccess

Biogeochemical Processes at Hydrothermal Vents: Microbes and Minerals, Bioenergetics, and Carbon Fluxes

By James F. Holden , John A. Breier , Karyn L. Rogers, Mitchell D. Schulte, and Brandy M. Toner  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Hydrothermal vents are among the most biologically active regions of the deep ocean. However, our understanding of the limits of life in this extreme environment, the extent of biogeochemical transformation that occurs in the crust and overlying ocean, and the impact of vent life on regional and global ocean chemistry is in its infancy. Recently, scientific studies have expanded our view of how vent microbes gain metabolic energy at vents through their use of dissolved chemicals and minerals contained in ocean basalts, seafloor sulfide deposits, and hydrothermal plumes and, in turn, how they catalyze chemical and mineral transformations. The scale of vent environments and the difficulties inherent in the study of life above, on, and below the deep seafloor have led to the development of geochemical and bioenergetic models. These models predict habitability and biological activity based on the chemical composition of hydrothermal fluids, seawater, and the surrounding rock, balanced by the physiological energy demand of cells. This modeling, coupled with field sampling for ground truth and discovery, has led to a better understanding of how hydrothermal vents affect the ocean and global geochemical cycles, and how they influence our views of life on the early Earth and the search for life beyond our own planet.

Citation

Holden, J.F., J.A. Breier, K.L. Rogers, M.D. Schulte, and B.M. Toner. 2012. Biogeochemical processes at hydrothermal vents: Microbes and minerals, bioenergetics, and carbon fluxes. Oceanography 25(1):196–208, https://doi.org/10.5670/oceanog.2012.18.

References

Amend, J.P., T.M. McCollom, M. Hentscher, and W. Bach. 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta 75:5,736–5,748, https://doi.org/10.1016/j.gca.2011.07.041.

Baker, E.T., and C.R. German. 2004. On the global distribution of hydrothermal vent fields. Pp. 245–266 in Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. C.R. German, J. Lin, and L.M. Parson, eds, Geophysical Monograph Series, vol. 148, American Geophysical Union, Washington, DC.

Baross, J.A., and S.E. Hoffman. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere 15:327–345, https://doi.org/10.1007/BF01808177.

Bennett, S.A., E.P. Achterberg, D.P. Connelly, P.J. Statharn, G.R. Fones, and C.R. German. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270:157–167, https://doi.org/10.1016/j.epsl.2008.01.048.

Bennett, S.A., P.J. Statham, D.R.H. Green, N. le Bris, J. McDermott, F. Prado, O.J. Rouxel, K.L. Von Damm, and C.R. German. 2011. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50’N. Deep-Sea Research Part I 58:922–931, https://doi.org/10.1016/j.dsr.2011.06.010.

Berg, I.A., D. Kockelkorn, W.H. Ramos-Vera, R.F. Say, J. Zarzycki, M. Hügler, B.E. Alber, and G. Fuchs. 2010. Autotrophic carbon fixation in archaea. Nature Reviews Microbiology 8:447–460, https://doi.org/10.1038/nrmicro2365.

Breier, J.A., C.G. Rauch, K. McCartney, B.M. Toner, S.C. Fakra, S.N. White, and C.R. German. 2009. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters. Deep-Sea Research Part I 56:1,579–1,589, https://doi.org/10.1016/j.dsr.2009.04.005.

Breier, J.A., S.N. White, and C.R. German. 2010. Mineral-microbe interactions in deep-sea hydrothermal systems: A challenge for Raman spectroscopy. Philosophical Transactions of the Royal Society A 368:3,067–3,086, https://doi.org/10.1098/rsta.2010.0024.

Butterfield, D.A., G.J. Massoth, R.E. McDuff, J.E. Lupton, and M.D. Lilley. 1990. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. Journal of Geophysical Research 95:12,895-12,921.

Butterfield, D.A., R.E. McDuff, M.J. Mottl, M.D. Lilley, J.E. Lupton, and G.J. Massoth. 1994. Gradients in the composition of hydrothermal fluids from the Endeavour Segment vent field: Phase separation and brine loss. Journal of Geophysical Research 99:9,561–9,583, https://doi.org/10.1029/93JB03132.

Butterfield, D.A., K.K. Roe, M.D. Lilley, J.A. Huber, J.A. Baross, R.W. Embley, and G.J. Massoth. 2004. Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. Pp. 269–289 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.

Camilli, R., and A.N. Duryea. 2009. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry. Environmental Science Technology 43:5,014–5,021, https://doi.org/10.1021/es803717d.

Carr, M.H. 1996. Water erosion on Mars and its biological implications. Endeavour 20:56–60.

Chan, C.S., S.C. Fakra, D. Emerson, E.J. Fleming, and K.J. Edwards. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. The ISME Journal 5:717–727, https://doi.org/10.1038/ismej.2010.173.

Charlou, J.L., J.P. Donval, E. Douville, P. Jean-Baptiste, J. Radford-Knoery, Y. Fouquet, A. Dapoigny, and M. Stievenard. 2000. Compared geochemical signatures and the evolution of Menez Gwen (37°50’N) and Lucky Strike (37°17’N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chemical Geology 171:49–75, https://doi.org/10.1016/S0009-2541(00)00244-8.

Charlou, J.L., J.P. Donval, Y. Fouquet, P. Jean-Baptiste, and N. Holm. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’N, MAR). Chemical Geology 191:345–359, https://doi.org/10.1016/S0009-2541(02)00134-1.

Chyba, C.F., and C.B. Phillips. 2007. Europa. Pp. 388–423 in Planets and Life: The Emerging Science of Astrobiology. W.T. Sullivan III and J.A. Baross, eds, Cambridge University Press, Cambridge, UK.

Cowen, J.P., M.A. Bertram, S.G. Wakeham, R.E. Thomson, J.W. Lavelle, E.T. Baker, and R.A. Feely. 2001. Ascending and descending particle flux from hydrothermal plumes at Endeavour Segment, Juan de Fuca Ridge. Deep-Sea Research Part I 48:1,093–1,120, https://doi.org/10.1016/S0967-0637(00)00070-4.

Crone, T.J., M. Tolstoy, and D.F. Stroup. 2011. Permeability structure of young ocean crust from poroelastically triggered earthquakes. Geophysical Research Letters 38, L05305, https://doi.org/10.1029/2011GL046820.

Cruse, A.M., and J.S. Seewald. 2006. Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta 70:2,073–2,092, https://doi.org/10.1016/j.gca.2006.01.015.

De Angelis, M.A., M.D. Lilley, E.J. Olson, and J.A. Baross. 1993. Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Research Part I 40:1,169–1,186, https://doi.org/10.1016/0967-0637(93)90132-M.

Dick, G.J., and B.M. Tebo. 2010. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environmental Microbiology 12:1,334–1,347, https://doi.org/10.1111/j.1462-2920.2010.02177.x.

Edwards, K.J., T.M. McCollom, H. Konishi, and P.R. Buseck. 2003. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies. Geochimica et Cosmochimica Acta 67:2,843–2,856, https://doi.org/10.1016/S0016-7037(03)00089-9.

Elderfield, H., and A. Schultz. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences 24:191–224, https://doi.org/10.1146/annurev.earth.24.1.191.

Emerson, D., J.A. Rentz, T.G. Lilburn, R.E. Davis, H. Aldrich, C. Chan, and C.L. Moyer. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2, e667, https://doi.org/10.1371/journal.pone.0000667.

Fisher, A.T., E.E. Davis, and K. Becker. 2008. Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust: Implications for crustal-scale properties. Journal of Geophysical Research 113, B07106, https://doi.org/10.1029/2007JB005447.

Flores, G.E., J.H. Campbell, J.D. Kirshtein, J. Meneghin, M. Podar, J.I. Steinberg, J.S. Seewald, M.K. Tivey, M.A. Voytek, Z.K. Yang, and A.L. Reysenbach. 2011. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environmental Biology 13:2,158–2,171, https://doi.org/10.1111/j.1462-2920.2011.02463.x.

Foustoukos, D.I., J.L. Houghton, W.E. Seyfried Jr., S.M. Sievert, and G.D. Cody. 2011. Kinetics of H2-O2-H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochimica et Cosmochimica Acta 75:1.594–1,607, https://doi.org/10.1016/j.gca.2010.12.020.

Gallant, R.M., and K.L. Von Damm. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochemistry Geophysics Geosystems 7, Q06018, https://doi.org/10.1029/2005GC001067.

Gamo, T., H. Chiba, T. Yamanaka, T. Okudaira, J. Hashimoto, S. Tsuchida, J. Ishibashi, S. Kataoka, U. Tsunogai, K. Okamura, and others. 2001. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters 193:371–379, https://doi.org/10.1016/S0012-821X(01)00511-8.

Gamo, T., K. Okamura, J.L. Charlou, T. Urabe, J.M. Auzende, J. Ishibashi, K. Shitashima, and H. Chiba. 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology 25:139–142, https://doi.org/10.1130/0091-7613(1997)025<0139:AASRHF>2.3.CO;2.

German, C.R., and K.L. Von Damm. 2004. Hydrothermal processes. Pp. 181–222 in Treatise on Geochemistry, Volume 6: The Oceans and Marine Geochemistry. H.D. Holland and K.K. Turekian, eds, Elsevier, London.

German, C.R., A.M. Thurnherr, J. Knoery, J.L. Charlou, P. Jean-Baptiste, and H.N. Edmonds. 2010. Heat, volume and chemical fluxes from submarine venting: A synthesis of results from the Rainbow hydrothermal field, 36°N MAR. Deep-Sea Research Part I 57:518–527, https://doi.org/10.1016/j.dsr.2009.12.011.

Girguis, P.R., and J.F. Holden. 2012. On the potential for bioenergy and biofuels from hydrothermal vent microbes. Oceanography 25(1):213–217, https://doi.org/10.5670/oceanog.2012.20.

Haymon, R.M. 1983. Growth history of hydrothermal black smoker chimneys. Nature 301:695–698, https://doi.org/10.1038/301695a0.

Haymon, R.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, M.R. Perfit, J.M. Edmond, W.C. Shanks III, R.A. Lutz, J.M. Grebmeier, S. Carbotte, and others. 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52’N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters 119:85–101, https://doi.org/10.1016/0012-821X(93)90008-W.

Heberling, C., R.P. Lowell, L. Liu, and M.R. Fisk. 2010. Extent of the microbial biosphere in the oceanic crust. Geochemistry Geophysics Geosystems 11, Q08003, https://doi.org/10.1029/2009GC002968.

Hoehler, T.M. 2004. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215, https://doi.org/10.1111/j.1472-4677.2004.00033.x.

Holden, J.F., A. Lal Menon, and M.W.W. Adams. 2011. Hyperthermophile-metal interactions in hydrothermal environments. Pp. 39–63 in Microbial Metal and Metalloid Metabolism: Advances and Applications. J.F. Stolz and R.S. Oremland, eds, American Society for Microbiology, Washington, DC.

Holden, J.F., M. Summit, and J.A. Baross. 1998. Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiology Ecology 25:33–41, https://doi.org/10.1111/j.1574-6941.1998.tb00458.x.

Houghton, J.L., and W.E. Seyfried Jr. 2010. An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. Geobiology 8:457–470, https://doi.org/10.1111/j.1472-4669.2010.00255.x.

Huber, J.A., D.B.M. Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, and M.L. Sogin. 2007. Microbial population structures in the deep marine biosphere. Science 318:97–100, https://doi.org/10.1126/science.1146689.

Hügler, M., and S.M. Sievert. 2011. Beyond the Calvin Cycle: Autotrophic carbon fixation in the ocean. Annual Review of Marine Science 3:261–289, https://doi.org/10.1146/annurev-marine-120709-142712.

Jackson, B.E., and M.J. McInerney. 2002. Anaerobic microbial metabolism can proceed close to the thermodynamic limits. Nature 415:454–456, https://doi.org/10.1038/415454a.

Jakosky, B.M., and E.L. Shock. 1998. The biological potential of Mars, the early Earth, and Europa. Journal of Geophysical Research 103:19,359–19,364, https://doi.org/10.1029/98JE01892.

Kashefi, K., and D.R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934, https://doi.org/10.1126/science.1086823.

Khripounoff, A., A. Vangriesheim, P. Crassous, M. Segonzac, V. Lafon, and A. Waren. 2008. Temporal variation of currents, particulate flux and organism supply at two deep-sea hydrothermal fields of the Azores Triple Junction. Deep-Sea Research Part I 55:532–551, https://doi.org/10.1016/j.dsr.2008.01.001.

Kristall, B., D.S. Kelley, M.D. Hannington, and J.R. Delaney. 2006. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: A petrological and geochemical study. Geochemistry Geophysics Geosystems 7, Q07001, https://doi.org/10.1029/2005GC001166.

Lam, P., J.P. Cowen, B.N. Popp, and R.D. Jones. 2008. Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume. Geochimica et Cosmochimica Acta 72:2,268–2,286, https://doi.org/10.1016/j.gca.2008.01.033.

Lang, S.Q., D.A. Butterfield, M. Schulte, D.S. Kelley, and M.D. Lilley. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochimica et Cosmochimica Acta 74:941–952, https://doi.org/10.1016/j.gca.2009.10.045.

Lilley, M.D., D.A. Butterfield, J.E. Lupton, and E.J. Olson. 2003. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881.

Lipp, J.S., Y. Morono, F. Inagaki, and K.U. Hinrichs. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994, https://doi.org/10.1038/nature07174.

Luther, G.W., B.T. Glazer, S. Ma, R.E. Trouwborst, T.S. Moore, E. Metzger, C. Kraiya, T.J. Waite, G. Druschel, B. Sundby, and others. 2008. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry 108:221–235, https://doi.org/10.1016/j.marchem.2007.03.002.

McCollom, T.M. 1999. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research 104:30,729–30,742, https://doi.org/10.1029/1999JE001126.

McCollom, T.M. 2000. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Research Part I 47:85–101, https://doi.org/10.1016/S0967-0637(99)00048-5.

McCollom, T.M., and J.P. Amend. 2005. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144, https://doi.org/10.1111/j.1472-4669.2005.00045.x.

McCollom, T.M., and W. Bach. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta 73:856–875, https://doi.org/10.1016/j.gca.2008.10.032.

McCollom, T.M., and E.L. Shock. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61:4,375–4,391, https://doi.org/10.1016/S0016-7037(97)00241-X.

McEwen, A.S., L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, and V.C. Gulick. 2011. Seasonal flows on warm Martian slopes. Science 333:740-743, https://doi.org/10.1126/science.1204816.

Mottl, M.J., J.S. Seewald, C.G. Wheat, M.K. Tivey, P.J. Michael, G. Proskurowski, T.M. McCollom, E. Reeves, J. Sharkey, C.F. You, and others. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta 75:1,013–1,038, https://doi.org/10.1016/j.gca.2010.12.008.

Mumma, M.J., G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, and M.D. Smith. 2009. Strong release of methane on Mars in northern summer 2003. Science 323:1,041–1,045, https://doi.org/10.1126/science.1165243.

Ottesen, E.A., R. Marin III, C.M. Preston, C.R. Young, J.P. Ryan, C.A. Scholin, and E.F. DeLong. 2011. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. The ISME Journal 5:1,881–1,895, https://doi.org/10.1038/ismej.2011.70.

Parkes, R.J., B.A. Cragg, S.J. Bale, J.M. Getliff, K. Goodman, P.A. Rochelle, J.C. Fry, A.J. Weightman, and S.M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413, https://doi.org/10.1038/371410a0.

Preston, C.M., A. Harris, J.P. Ryan, B. Roman, R. Marin III, S. Jensen, C. Everlove, J. Birch, J.M. Dzenitis, D. Pargett, and others. 2011. Underwater application of quantitative PCR on an ocean mooring. PLoS ONE 6, e22522, https://doi.org/10.1371/journal.pone.0022522.

Price, P.B., and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America 101:4,631–4,636, https://doi.org/10.1073/pnas.0400522101.

Reysenbach, A.L., Y. Liu, A.B. Banta, T.J. Beveridge, J.D. Kirshtein, S. Schouten, M.K. Tivey, K.L. Von Damm, and M.A. Voytek. 2006. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447, https://doi.org/10.1038/nature04921.

Rogers, D.R., C.M. Santelli, and K.J. Edwards. 2003. Geomicrobiology of deep-sea deposits: Estimating community diversity from low-temperature seafloor rocks and minerals. Geobiology 1:109–117, https://doi.org/10.1046/j.1472-4669.2003.00009.x.

Sander, S.G., and A. Koschinsky. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geosciences 4:145–150, https://doi.org/10.1038/ngeo1088.

Sander, S.G., A. Koschinsky, G. Massoth, M. Stott, and K.A. Hunter. 2007. Organic complexation of copper in deep-sea hydrothermal vent systems. Environmental Chemistry 4:81–89, https://doi.org/10.1071/EN06086.

Schidlowski, M. 1993. The initiation of biological processes on Earth: Summary of empirical evidence. Pp. 639–655 in Organic Geochemistry. M.H. Engel and S.A. Macko, eds, Plenum, New York.

Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61:262–280.

Schmidt, K., A. Koschinsky, D. Garge-Schönberg, L.M. de Carvalho, and R. Seifert. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology 242:1–21, https://doi.org/10.1016/j.chemgeo.2007.01.023.

Scholin, C, G. Doucette, S. Jensen, B. Roman, D. Pargett, R. Marin III, C. Preston, W. Jones, J. Feldman, C. Everlove, and others. 2009. Remote detection of marine microbes, small invertebrates, harmful algae and biotoxins using the Environmental Sample Processor (ESP). Oceanography 22(2):158–167, https://doi.org/10.5670/oceanog.2009.46.

Schopf, J.W. 1993. Microfossils of the early Archean Apex chert: New evidence of the antiquity of life. Science 260:640–646, https://doi.org/10.1126/science.260.5108.640.

Seewald, J., A. Cruse, and P. Saccocia. 2003. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Temporal variability following earthquake activity. Earth and Planetary Science Letters 216:575–590, https://doi.org/10.1016/S0012-821X(03)00543-0.

Shackelford, R., and J.P. Cowen. 2006. Transparent exopolymer particles (TEP) as a component of hydrothermal plume particle dynamics. Deep-Sea Research Part I 53:1,677–1,694, https://doi.org/10.1016/j.dsr.2006.08.001.

Shock, E.L., and M.D. Schulte. 1998. Organic synthesis during fluid mixing in hydrothermal systems. Journal of Geophysical Research 103:28,513–28,527, https://doi.org/10.1029/98JE02142.

Sievert, S.M., and C. Vetriani. 2012. Chemoautotrophy at deep-sea vents: Past, present, and future. Oceanography 25(1):218–233, https://doi.org/10.5670/oceanog.2012.21.

Sievert, S.M., E.B.A. Wleringa, C.O. Wirsen, and C.D. Taylor. 2007. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environmental Microbiology 9:271–276, https://doi.org/10.1111/j.1462-2920.2006.01156.x.

Smith, J.N., and E.L. Shock. 2007. A thermodynamic analysis of microbial growth experiments. Astrobiology 7:891–904, https://doi.org/10.1089/ast.2006.0118.

Stein, C.A., and S. Stein. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research 99:3,081–3,095.

Stroup, D.F., M. Tolstoy, T.J. Crone, A. Malinverno, D.R. Bohnenstiehl, and F. Waldhauser. 2009. Systematic along-axis tidal triggering of microearthquakes observed at 9°50’N East Pacific Rise. Geophysical Research Letters 36, L18302, https://doi.org/10.1029/2009GL039493.

Takai, K., and K. Nakamura. 2010. Compositional, physiological and metabolic variability in microbial communities associated with geochemically diverse, deep-sea hydrothermal vent fluids. Pp. 251–283 in Geomicrobiology: Molecular and Environmental Perspective. A. Loy, M. Mandl, and L.L. Barton, eds, Springer, New York.

Takai, K., K. Nakamura, T. Toki, U. Tsunogai, M. Miyazaki, J. Miyazaki, H. Hirayama, S. Nakagawa, T. Nunoura, and K. Horikoshi. 2008a. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America 105:10,949–10,954, https://doi.org/10.1073/pnas.0712334105.

Takai, K., T. Nunoura, K. Horikoshi, T. Shibuya, K. Nakamura, Y. Suzuki, M. Stott, G.J. Massoth, B.W. Christenson, C.E.J. deRonde, and others. 2009. Variability in microbial communities in black smoker chimneys at the NW Caldera vent field, Brothers Volcano, Kermadec Arc. Geomicrobiology Journal 26:552–569, https://doi.org/10.1080/01490450903304949.

Takai, K., T. Nunoura, J. Ishibashi, J. Lupton, R. Suzuki, H. Hamasaki, Y. Ueno, S. Kawagucci, T. Gamo, Y. Suzuki, and others. 2008b. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. Journal of Geophysical Research 113, G02031, https://doi.org/10.1029/2007JG000636.

Tagliabue, A., L. Bopp, J.C. Dutay, A.R. Bowie, F. Chever, P. Jean-Baptiste, E. Bucciarelli, D. Lannuzel, T. Remenyi, G. Sarthou, and others. 2010. Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geosciences 3:252–256, https://doi.org/10.1038/ngeo818.

Taylor, C.D., K.D. Doherty, S.J. Molyneaux, A.T. Morrison, J.D. Billings, I.B. Engstrom, D.W. Pfitsch, and S. Honjo. 2006. Autonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments. Deep Sea Research Part I 53:894–916, https://doi.org/10.1016/j.dsr.2006.01.009.

Tivey, M.K. 2004. Environmental conditions within active seafloor vent structures: Sensitivity to vent fluid composition and fluid flow. Pp. 137–152 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.

Toner, B.M., S.C. Fakra, S.J. Manganini, C.M. Santelli, M.A. Marcus, J. Moffett, O. Rouxel, C.R. German, and K.J. Edwards. 2009a. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geosciences 2:197–201, https://doi.org/10.1038/ngeo433.

Toner, B.M., C.M. Santelli, M.A. Marcus, R. Wirth, C.S. Chan, T. McCollom, W. Bach, and K.J. Edwards. 2009b. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge. Geochimica et Cosmochimica Acta 73:388–403, https://doi.org/10.1016/j.gca.2008.09.035.

Toner, B.M., M.A. Marcus, K.J. Edwards, O. Rouxel, and C.R. German. 2012. Measuring the form of iron in hydrothermal plume particles. Oceanography 25(1):209–212, https://doi.org/10.5670/oceanog.2012.19.

Turekian, K.K. 1968. Oceans. Prentice-Hall, Englewood Cliffs, NJ, 149 pp.

Varnes, E.S., B.M. Jakosky, and T.M. McCollom. 2003. Biological potential of Martian hydrothermal systems. Astrobiology 3:407–414, https://doi.org/10.1089/153110703769016479.

Ver Eecke, H.C., D.S. Kelley, and J.F. Holden. 2009. Abundances of hyperthermophilic autotrophic Fe(III) oxide reducers and heterotrophs in hydrothermal sulfide chimneys of the northeastern Pacific Ocean. Applied and Environmental Microbiology 75:242–245, https://doi.org/10.1128/AEM.01462-08.

Von Damm, K.L., and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: Origin, evolution and biogeochemical controls. Pp. 245–268 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.

Von Damm, K.L., A.M. Bray, L.G. Buttermore, and S.E. Oosting. 1998. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge. Earth and Planetary Science Letters 160:521–536, https://doi.org/10.1016/S0012-821X(98)00108-3.

Wacey, D., M.R. Kilburn, M. Saunders, J. Cliff, and M.D. Brasier. 2011. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience 4:698–702, https://doi.org/10.1038/NGEO1238.

Wakeham, S.G., J.P. Cowen, B.J. Burd, and R.E. Thomson. 2001. Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta 65:923–939, https://doi.org/10.1016/S0016-7037(00)00580-9.

Wankel, S.D., L.N. Germanovich, M.D. Lilley, G. Genc, C.J. DiPerna, A.S. Bradley, E.J. Olson, and P.R. Girguis. 2011. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geoscience 4:461–468, https://doi.org/10.1038/ngeo1183.

Whitman, W.B., D.C. Coleman, and W.J. Wiebe. 1998. Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences the United States of America 95:6,578–6,583.

Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews 51:221–271.

Zolotov, M.Y., and E.L. Shock. 2003. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research 108:5022, https://doi.org/10.1029/2002JE001966.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.