Oceanography The Official Magazine of
The Oceanography Society
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment.

Citation

Yager, P.L., R.M. Sherrell, S.E. Stammerjohn, A.-C. Alderkamp, O. Schofield, E.P. Abrahamsen, K.R. Arrigo, S. Bertilsson, D.L. Garay, R. Guerrero, K.E. Lowry, P.-O. Moksnes, K. Ndungu, A.F. Post, E. Randall-Goodwin, L. Riemann, S. Severmann, S. Thatje, G.L. van Dijken, and S. Wilson. 2012. ASPIRE: The Amundsen Sea Polynya International Research Expedition. Oceanography 25(3):40–53, https://doi.org/10.5670/oceanog.2012.73.

References
    Alderkamp, A.-C., M.M. Mills, G.L. van Dijken, P. Laan, C.E. Thuróczy, L.J.A. Gerringa, H.J.W. de Baar, C. Payne, R.J.W. Visser, A.G.J. Buma, and K.R. Arrigo. 2012a. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity. Deep-Sea Research Part II 71:32–48, https://doi.org/10.1016/j.dsr2.2012.03.005.
  1. Alderkamp, A.-C., G.L. van Dijken, K.E. Lowry, O. Schofield, R.M. Sherrell, P.L. Yager, and K.R. Arrigo. 2012b. Iron and light effects on phytoplankton primary productivity in the Amundsen Sea (Antarctica). Eos, Transactions American Geophysical Union 93, Ocean Sciences Meeting Supplement, Abstract #12544.
  2. Arrigo, K.R., K.E. Lowry, and G.L. van Dijken. 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep-Sea Research Part II 71:5–15, https://doi.org/10.1016/j.dsr2.2012.03.006.
  3. Arrigo, K.R., D.H. Robinson, D.L. Worthen, R.B. Dunbar, G.R. DiTullio, M. VanWoert, and M.P. Lizotte. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367, https://doi.org/10.1126/science.283.5400.365.
  4. Arrigo, K.R., and G.L. van Dijken. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research 108, 3271, https://doi.org/10.1029/2002JC001739.
  5. Arrigo, K.R., G.L. van Dijken, and S. Bushinsky. 2008a. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research 113, C08004, https://doi.org/10.1029/2007JC004551.
  6. Arrigo, K.R., G.L. van Dijken, and M.C. Long. 2008b. The coastal Southern Ocean: A strong anthropogenic CO2 sink. Geophysical Research Letters 35, L21602, https://doi.org/10.1029/2008GL035624.
  7. Azam, F., and R.A. Long. 2001. Oceanography: Sea snow microcosms. Nature 414:495–498, https://doi.org/10.1038/35107174.
  8. Bertilsson, S., A. Eiler, A. Nordqvist, and N.O.G. Jørgensen. 2007. Links between bacterial production, amino acid utilization and community composition in productive lakes. ISME Journal 1:532–544, https://doi.org/10.1038/ismej.2007.64.
  9. Boyd, P.W. 2002. Environmental factors controlling phytoplankton processes in the Southern Ocean. Journal of Phycology 38:844–861, https://doi.org/10.1046/j.1529-8817.2002.t01-1-01203.x.
  10. Boyd, P.W., and S.C. Doney. 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29(16), 1806, https://doi.org/10.1029/2001GL014130.
  11. Boyd, P.W., and T.W. Trull. 2007. Understanding the export of biogenic particles in oceanic waters: Is there a consensus? Progress in Oceanography 72:276–312, https://doi.org/10.1016/j.pocean.2006.10.007.
  12. Caron, D.A., M.R. Dennett, D.J. Lonsdale, D.M. Moran, and L. Shalapyonok. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Research Part II 47:3,249–3,272, https://doi.org/10.1016/S0967-0645(00)00067-9.
  13. Duarte, C.M., and J. Cebrian. 1996. The fate of marine autotrophic production. Limnology and Oceanography 41(8):1,758–1,766.
  14. Ducklow, H.W., C.A. Carlson, M. Church, D.L. Kirchman, D.C. Smith, and G. Steward. 2001a. The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica, 1994–1997. Deep Sea Research Part II 48:4,199–4,221, https://doi.org/10.1016/S0967-0645(01)00086-8.
  15. Ducklow, H.W., A. Clarke, R. Dickhut, S.C. Doney, H. Geisz, K. Huang, D.G. Martinson, M.P.M. Meredith, H.V. Moeller, M. Montes-Hugo, and others. 2012. The marine ecosystem of the West Antarctic Peninsula. Pp. 121–159 in An Extreme Environment in a Changing World. A. Rogers, N. Johnston, A. Clarke, and E. Murphy, eds, Blackwell Publishing, Oxford.
  16. Ducklow, H.W., M. Erickson, J. Kelly, R.C. Smith, S.E. Stammerjohn, M. Vernet, and D.M. Karl. 2008. Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2006. Deep Sea Research Part II 55:2,118–2,131, https://doi.org/10.1016/j.dsr2.2008.04.028.
  17. Ducklow, H.W., D.K. Steinberg, and K.O. Buesseler. 2001b. Upper ocean carbon export and the biological pump. Oceanography 14(4):50–58, https://doi.org/10.5670/oceanog.2001.06.
  18. Ducklow, H.W., and P.L. Yager. 2007. Pelagic bacterial processes in polynyas. Pp. 323–362 in Polynyas: Windows to the World. W.O. Smith Jr. and D.G. Barber, eds, Elsevier, Amsterdam.
    Fragoso, G.M., and W.O. Smith Jr. 2012. Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. Journal of Marine Systems 89:19–29, https://doi.org/10.1016/j.jmarsys.2011.07.008.
  19. Fuhrman, J.A. 1992. Bacterioplankton roles in cycling of organic matter: The microbial food web. Pp. 361–383 in Primary Productivity and Biogeochemical Cycles in the Sea. P.G. Falkowski and A.D. Woodhead, eds, Plenum Press, New York.
  20. Gade, H.G. 1979. Melting of ice in seawater: A primitive model with application to the Antarctic ice shelf and icebergs. Journal of Physical Oceanography 9(1):189–198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.
  21. Gerringa, L.J.A., A.-C. Alderkamp, P. Laan, C.-E. Thuróczy, H.J.W. de Baar, M.M. Mills, G.L. van Dijken, H. van Haren, and K.R. Arrigo. 2012. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep Sea Research Part II 71:16–31, https://doi.org/10.1016/j.dsr2.2012.03.007.
  22. Gorbunov, M.Y., and P.G. Falkowski. 2005. Fluorescence Induction and Relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. Pp. 1,029–1,031 in Photosynthesis: Fundamental Aspects to Global Perspectives. A. van der Est and D. Bruce, eds, Allen Press.
  23. Granéli, W., P. Carlsson, and S. Bertilsson. 2004. Bacterial abundance, production, and organic carbon limitation in the Southern Ocean (39–62°S, 4–14°E) during the austral summer 1997/1998. Deep-Sea Research Part II 51:2,569–2,582, https://doi.org/10.1016/j.dsr2.2001.01.003.
  24. Hellmer, H.H., S.S. Jacobs, and A. Jenkins. 1998. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. Pp. 83–99 in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin. Antarctic Research Series, vol. 75, American Geophysical Union, Washington, DC, https://doi.org/10.1029/AR075p0083.
  25. Hiscock, M.R., J. Marra, W.O. Smith Jr., R. Georicke, C. Measures, W. Vink, R.J. Olson, H. Sosik, and R.T. Barber. 2003. Primary productivity and its regulation in the Pacific sector of the Southern Ocean. Deep Sea Research Part II 50:533–558, https://doi.org/10.1016/S0967-0645(02)00583-0.
  26. Jacobs, S.S., A. Jenkins, C.F. Giulivi, and P. Dutrieux. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience 4(8):519–523, https://doi.org/10.1038/ngeo1188.
  27. Jenkins, A., P. Dutrieux, S.S. Jacobs, S.D. McPhail, J.R. Perrett, A.T. Webb, and D. White. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience 3:468–472: https://doi.org/10.1038/ngeo890.
  28. Karl, D.M. 1993. Microbial processes in the Southern Ocean. Pp. 1–63 in Antarctic Microbiology. E.I. Friedmann, ed., Wiley, New York.
  29. Krishnamurthy, A., J.K. Moore, and S.C. Doney. 2008. The effects of dilution and mixed layer depth on deliberate ocean iron fertilization: 1-D simulations of the Southern Ocean iron experiment (SOFeX). Journal of Marine Systems 71:112–130, https://doi.org/10.1016/j.jmarsys.2007.07.002.
  30. Legendre, L., and J. Le Fevre. 1995. Microbial food webs and the export of biogenic carbon in the oceans. Aquatic Microbial Ecology 9:69–77.
  31. Lin, H., S. Rauschenberg, C.R. Hexel, T.J. Shaw, and B.S. Twining. 2011. Free-drifting icebergs as sources of iron to the Weddell Sea. Deep Sea Research Part II 58:1,392–1,406, https://doi.org/10.1016/j.dsr2.2010.11.020.
  32. Marshall, G.J. 2007. Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. International Journal of Climatology 27:373–383, https://doi.org/10.1002/joc.1407.
  33. Martinson, D., S. Stammerjohn, R. Iannuzzi, R. Smith, and M. Vernet. 2008. Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep Sea Research Part II 55:1,964–1,987, https://doi.org/10.1016/j.dsr2.2008.04.038.
  34. Michaels, A.F., and M.W. Silver. 1988. Primary production, sinking fluxes and the microbial food web. Deep Sea Research Part I 35:473–490, https://doi.org/10.1016/0198-0149(88)90126-4.
  35. Miller, L.A., P.L. Yager, K.A. Erickson, J. Bâcle, J.K. Cochran, M.-È. Garneau, M. Gosselin, D.J. Hirschberg, B. Klein, B. LeBlanc, and W.L. Miller. 2002. Carbon distributions and fluxes in the North Water, 1998 and 1999. Deep Sea Research Part II 49:5,151–5,170, https://doi.org/10.1016/S0967-0645(02)00183-2.
  36. Mills, M.M., A.-C. Alderkamp, C.-E. Thuróczy, G.L. van Dijken, H.J.W. de Baar, and K.R. Arrigo. 2012. Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas. Deep-Sea Research Part II 71:61–76, https://doi.org/10.1016/j.dsr2.2012.03.008.
  37. Mongin, M., D.M. Nelson, P. Pondaven, and P. Tréguer. 2007. Potential phytoplankton responses to iron and stratification changes in the Southern Ocean based on a flexible-comparison phytoplankton model. Global Biogeochemical Cycles 21, GB4020, https://doi.org/10.1029/2007GB002972.
  38. Mu, L., and P.L. Yager. 2012. Atmospheric CO2 uptake by a super-productive Antarctic polynya. Eos, Transactions American Geophysical Union 93, Ocean Sciences Meeting Supplement, Abstract #12213.
  39. Murphy E.J., P.N. Trathan, J.L. Watkins, K. Reid, M.P. Meredith, J. Forcada, S.E. Thorpe, N.M. Johnston, and P. Rothery. 2007. Climatically driven fluctuations in Southern Ocean ecosystems. Proceedings of the Royal Society B 274:3,057–3,067, https://doi.org/10.1098/rspb.2007.1180.
  40. Parkinson, C.L., and D.J. Cavalieri. 2012. Antarctic sea ice variability and trends, 1979–2010. Cryosphere Discussions 6:931–956, https://doi.org/10.5194/tcd-6-931-2012.
  41. Raiswell, R., and D.E. Canfield. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives 1, https://doi.org/10.7185/geochempersp.1.1.
  42. Randall-Goodwin, E. 2012. Detecting meltwater in the Amundsen Sea Polynya region, West Antarctica. Master’s Thesis, University of California, Santa Cruz.
  43. Raven, J.A. 1990. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytologist 116:1–18, https://doi.org/10.1111/j.1469-8137.1990.tb00505.x.
  44. Rignot, E. 2008. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophysical Research Letters 35, L12505, https://doi.org/10.1029/2008GL033365.
  45. Sarmiento, J.L., R. Slater, R. Barber, L. Bopp, S.C. Doney, A.C. Hirst, J. Kleypas, R. Matear, U. Mikolajewicz, P. Monfray, and others. 2004. Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles 18, GB3003, https://doi.org/10.1029/2003GB002134.
  46. Sarmiento, J.L., and J.R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624, https://doi.org/10.1038/308621a0.
  47. Sedwick, P.N., C.M. Marsay, B.M. Sohst, A.M. Aguilar-Islas, M.C. Lohan, M.C. Long, K.R. Arrigo, R.B. Dunbar, M.A. Saito, W.O. Smith, and G.R. DiTullio. 2011. Early season depletion of dissolved iron in the Ross Sea Polynya: Implications for iron dynamics on the Antarctic continental shelf. Journal of Geophysical Research 116, C12019, https://doi.org/10.1029/2010JC006553.
  48. Shepherd A., D. Wingham, and E. Rignot. 2004. Warm ocean is eroding West Antarctic Ice Sheet. Geophysical Research Letters 31, L23402, https://doi.org/10.1029/2004GL021106.
  49. Sigman, D.M., and E.A. Boyle. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869, https://doi.org/10.1038/35038000.
  50. Simon, M., H.P. Grossart, B. Schweitzer, and H. Ploug. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28:175–211, https://doi.org/10.3354/ame028175.
  51. Smetacek, V., P. Assmy, and J. Henjes. 2004. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Science 16:541–558, https://doi.org/10.1017/S0954102004002317.
  52. Smith, W.O. Jr., and D.G. Barber, eds. 2007. Polynyas: Windows to the World. Elsevier Oceanography Series, vol. 74, Elsevier Science, Amsterdam, 474 pp.
  53. Smith, W.O. Jr., and J.C. Comiso. 2008. The influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research 113, C05S93, https://doi.org/10.1029/2007JC004251.
  54. Smith, W.O. Jr., and R.B. Dunbar. 1998. The relationship between new production and vertical flux on the Ross Sea continental shelf. Journal of Marine Systems 17:445–457, https://doi.org/10.1016/S0924-7963(98)00057-8.
  55. Smith, W.O. Jr., A.R. Shields, J.A. Peloquin, G. Catalano, S. Tozzi, M.S. Dinniman, and V.A. Asper. 2006. Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea. Deep Sea Research Part II 53:815–833, https://doi.org/10.1016/j.dsr2.2006.02.014.
  56. Stammerjohn, S., R. Massom, D. Rind, and D. Martinson. 2012. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophysical Research Letters 39, L06501, https://doi.org/10.1029/2012GL050874.
  57. Stephenson, G.R. Jr., J. Sprintall, S.T. Gille, M. Vernet, J.J. Helly, and R.S. Kaufmann. 2011. Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Research Part II 58:1,336–1,345, https://doi.org/10.1016/j.dsr2.2010.11.009.
  58. Sunda, W.G., and S.A. Huntsman. 1997. Interrelated influence of iron, light, and cell size on marine phytoplankton growth. Nature 390:389–392, https://doi.org/10.1038/37093.
  59. Sweeney, C. 2003. The annual cycle of surface CO2 and O2 in the Ross Sea: A model for gas exchange on the continental shelves of Antarctica. Pp. 295–312 in Biogeochemistry of the Ross Sea. G.R. DiTullio and R.B. Dunbar, eds, Antarctic Research Series, vol. 78, American Geophysical Union, Washington DC.
  60. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, and others. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II 49(9–10):1,601–1,622, https://doi.org/10.1016/S0967-0645(02)00003-6.
  61. Takahashi, T., C. Sweeney, and S.C. Sutherland. 2011. Underway pCO2 measurements in surface waters and the atmosphere during the R/V Nathaniel B. Palmer expeditions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.VOS_NB_Palmer_Lines.
  62. Thoma, M., A. Jenkins, D.M. Holland, and S.S. Jacobs. 2008. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters 35, L18602, https://doi.org/10.1029/2008GL034939.
  63. Wåhlin, A.K., X. Yuan, G. Björk, and C. Nohr. 2010. Inflow of warm Circumpolar Deep Water in the central Amundsen Shelf. Journal of Physical Oceanography 40:1,427–1,434, https://doi.org/10.1175/2010JPO4431.1.
  64. Walker, D.P., M.A. Brandon, A. Jenkins, J.T. Allen, J.A. Dowdeswell, and J. Evans. 2007. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophysical Research Letters 34, L02602, https://doi.org/10.1029/2006GL028154.
  65. Wassmann, P. 1998. Retention versus export food chains: Processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363:29–57, https://doi.org/10.1023/A:1003113403096.
  66. Williams, C.M., T.L. Connelly, K.A. Sines, and P.L. Yager. 2012. Pelagic microbial heterotrophy in a highly productive Antarctic polynya. Eos, Transactions American Geophysical Union 93, Ocean Sciences Meeting Supplement, Abstract #12236.
  67. Yager, P.L., D.W.R. Wallace, K.M. Johnson, W.O. Smith Jr., P.J. Minnett, and J.W. Deming. 1995. The Northeast Water Polynya as an atmospheric CO2 sink: A seasonal rectification hypothesis. Journal of Geophysical Research 100:4,389–4,398, https://doi.org/10.1029/94JC01962.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.