
CITATION

Yager, P.L., R.M. Sherrell, S.E. Stammerjohn, A.-C. Alderkamp, O. Schofield, E.P. Abrahamsen, 

K.R. Arrigo, S. Bertilsson, D.L. Garay, R. Guerrero, K.E. Lowry, P.-O. Moksnes, K. Ndungu, 

A.F. Post, E. Randall-Goodwin, L. Riemann, S. Severmann, S. Thatje, G.L. van Dijken, and 

S. Wilson. 2012. ASPIRE: The Amundsen Sea Polynya International Research Expedition. 

Oceanography 25(3):40–53, http://dx.doi.org/10.5670/oceanog.2012.73.

DOI

http://dx.doi.org/10.5670/oceanog.2012.73

COPYRIGHT 

This article has been published in Oceanography, Volume 25, Number 3, a quarterly journal of 

The Oceanography Society. Copyright 2012 by The Oceanography Society. All rights reserved. 

USAGE 

Permission is granted to copy this article for use in teaching and research. Republication, 

systematic reproduction, or collective redistribution of any portion of this article by photocopy 

machine, reposting, or other means is permitted only with the approval of The Oceanography 

Society. Send all correspondence to: info@tos.org or The Oceanography Society, PO Box 1931, 

Rockville, MD 20849-1931, USA.

OceanographyThe Official Magazine of the Oceanography Society

downloaded from http://www.tos.org/oceanography

http://dx.doi.org/10.5670/oceanog.2012.73
http://dx.doi.org/10.5670/oceanog.2012.73
mailto:info@tos.org
http://www.tos.org/oceanography


Oceanography |  Vol.  25, No. 340

S p e c i a l  Iss   u e  o n  An  ta r c t i c  O c e a n o g r a p h y  i n  a  C h a n g i n g  W o r l d

	 ASPIRE
The Amundsen Sea Polynya 

International Research Expedition

B y  Pat r i c i a  L .  Ya g e r ,  R o b e r t  M .  S h e r r e l l ,  S h a r o n  E .  S ta mm  e r j o h n , 

Ann   e - C a r l i j n  A l d e r k a m p,  Os  c a r  S c h o f i e l d ,  E .  P o v l  Ab  r a h a ms  e n , 

K e v i n  R .  A r r i g o ,  S t e f a n  B e r t i l ss  o n ,  D .  L o l l i e  G a r ay,  R a u l  G u e r r e r o , 

K at e  E .  L o w r y,  P e r - O l av  M o k sn  e s ,  K u r i a  N d u n g u ,  An  t o n  F .  P o s t , 

Ev  a n  R a n d a l l- G o o d w i n ,  L a ss  e  R i e m a nn  ,  S i l k e  S e v e r m a nn  , 

S v e n  T h at j e ,  G e r t  L .  va n  D i j k e n ,  a n d  S t e p h a n i e  W i l s o n

The bridge of RVIB Nathaniel B. Palmer look-
ing out upon the Amundsen Sea during 
early morning hours of December 21, 2010. 
Photo by K. Esswein
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Sarmiento et al., 2004). The efficiency 
of the biological pump in high-latitude 
seas strongly influences the degree to 
which carbon is sequestered in the deep 
sea, and therefore helps drive long-term 
atmospheric CO2 concentration (Sigman 
and Boyle, 2000). 

Polynyas, recurring areas of season-
ally open water surrounded by sea ice 
(Figures 1 and 2), are foci for energy and 

material transfer between the atmosphere 
and the polar ocean (Smith and Barber, 
2007). Polynyas often dominate the criti-
cal exchanges of their regions because 
the lack of ice in otherwise ice-covered 
seas allows for dramatic heat and air-sea 
gas exchange, greater light penetra-
tion, and air-sea access for birds and 
marine mammals. In these seasonally 
ice-covered areas, springtime conditions 
create temporally restricted but immense 
blooms (Smith and Comiso, 2008), with 
large associated reductions in surface 
ocean partial pressure of CO2 (pCO2; 
Yager et al., 1995; Takahashi et al., 2002; 
Sweeney, 2003) and intense sedimenta-
tion events (Ducklow et al., 2008). 

With high levels of unused macro-
nutrients year-round, the availability of 
iron (Fe) or light, or both, is thought to 
limit primary productivity in the coastal 

Abstr ac t. In search of an explanation for some of the greenest waters ever seen 
in coastal Antarctica and their possible link to some of the fastest melting glaciers 
and declining summer sea ice, the Amundsen Sea Polynya International Research 
Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and 
RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded 
by both an extraordinary research platform and a truly remarkable oceanic setting. 
Here we provide further insights into the key questions that motivated our sampling 
approach during ASPIRE and present some preliminary findings, while highlighting 
the value of the Palmer for accomplishing complex, multifaceted oceanographic 
research in such a challenging environment.

Introduc tion
High-latitude oceans are critical to global 
elemental cycles, as they are regions of 
high biological productivity, extensive 
air-sea heat and gas exchange, and global 
deepwater formation. The high produc-
tivity makes these regions dispropor-
tionately important, relative to their size, 
for the biogeochemical cycling of ele-
ments (Sarmiento and Toggweiler, 1984; 

Figure 1. (a) In the southeastern Pacific sector of the Southern Ocean, the Amundsen Sea Polynya is about as far away as you can get from human civilization. 
This polar stereographic projection shows polynyas in black, typical wintertime sea ice coverage in dark gray, and ice-covered continents and Antarctic conti-
nental shelf areas not associated with a polynya in white, with the Ross Sea Polynya (RSP), the Pine Island Polynya (PIP), the Bellingshausen Sea (BS), and the 
West Antarctic Peninsula (WAP) indicated (modified from Ducklow and Yager, 2007). (b) The 1979/80 to 2010/11 trends (days yr–1) in sea ice season duration 
for the West Antarctic region of the Southern Ocean, showing strong seasonal decreases in most of the Bellingshausen Sea, over and offshore of the shelf break 
in the Amundsen Sea, and in the Amundsen Sea Polynya region in front of the Dotson Ice Shelf. The black dotted contour outlines those trends significant at 
the p < 0.01 level, and the black solid contour is the 2,000 m depth line, indicating the shelf break/slope region. The red box outlines the Amundsen Sea Polynya 
region shown in Figure 2 (modified from Stammerjohn et al., 2012).
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Antarctic (Sunda and Huntsman, 1997; 
Boyd, 2002). Iron is required for the 
photosynthetic apparatus and electron 
transport pathways of all phytoplankton, 
as well as for nitrate assimilation. Iron 
and light limitation of photosynthesis 
are linked because the Fe requirement 
increases at low irradiance (Raven 1990).

Much of the primary production in 
Antarctic polynyas is carried out by 

microscopic algae, either Phaeocystis 
antarctica or diatoms. The relative con-
tributions of these two phytoplankton 
taxa influence the biogeochemistry and 
the ecology of the region and may be 
climate sensitive (e.g., Arrigo et al., 1999; 
Alderkamp et al., 2012a; Fragoso and 
Smith, 2012). For example, P. antarctica 
takes up twice as much CO2 per mole 
of phosphate removed than diatoms 

(Arrigo et al., 1999), and it is not 
readily grazed by microzooplankton 
(Caron et al., 2000). 

While not every polynya is inher-
ently productive (Figure 3, inset), 
primary production per unit area in 
Antarctic polynyas typically exceeds 
1 g C m–2 d–1 on average, much higher 
than offshore waters of the open 
Southern Ocean (0.2–0.4 g C m–2 d–1; 

Figure 2. (a) The ASPIRE stations (red numbers) and cruise track (gray line) superimposed on the continental shelf bathymetry 
(black lines); the dashed boxed depicts the areas shown in (c–d). (b) Moderate Resolution Imaging Spectroradiometer (MODIS) sea 
ice reflectance satellite image from January 2, 2011, showing polynya extent in relation to station numbers (green) and cruise track 
(white dashed line). (c) Chlorophyll a fluorescence in surface seawater measured continuously from the underway seawater system. 
Scale bar is nonlinear to emphasize the areas of high concentrations (bloom) in red and orange. Inset photo shows very green water 
at Station 35 (December 27, 2011; courtesy of D. Munroe). (d) Partial pressure of carbon dioxide in surface seawater (pCO2) mea-
sured continuously from the underway seawater system. Atmospheric values are approximately 390 ppm (light orange), so blue/
green/yellow values are below atmospheric saturation; orange/red values indicate supersaturation.
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Arrigo et al., 2008a). The Amundsen Sea, 
located off west Antarctica (Figure 1), 
harbors two particularly productive 
polynyas, the Amundsen Sea Polynya, 
~ 27,000 km2, and the Pine Island 
Polynya, ~ 18,000 km2 (Arrigo et al., 
2012). Specifically, the Amundsen Sea 
Polynya is, on average, the most pro-
ductive polynya (per unit area) in the 
Antarctic (Figure 3, inset), with the 
highest interannual variation (Arrigo 
and van Dijken, 2003). Compared 
to the much larger and well-studied 
Ross Sea Polynya, satellite data show 
that seasonally averaged chlorophyll a 
levels in the Amundsen Sea Polynya 
(2.2 ± 3.0 mg m–3) are more than 40% 
higher than the Ross Sea Polynya 
(1.5 ± 1.5 mg m–3). Also, the bloom in the 
Amundsen Sea Polynya peaks later than 
in the Ross Sea Polynya (January instead 
of December), and mean chlorophyll a 
concentrations are more variable from 
year to year (1997–2002)—138% of the 
mean in the Amundsen Sea Polynya, 
101% in the Ross Sea Polynya. This differ-
ence is especially meaningful because the 
Ross Sea Polynya is already considered to 
be quite variable (Smith et al., 2006). 

Glaciologists report that glaciers near 
the Amundsen Sea Polynya are under-
going some of the fastest rates of accel-
eration and thinning on the Antarctic 
Continent (Rignot, 2008). This rapid 
melting is driven far less by warmer 
air temperatures than by the increased 
presence of relatively warm (~ 2°C) 
Circumpolar Deep Water (CDW) 
beneath the ice shelf (Jenkins et al., 2010; 
Jacobs et al., 2011), offering a prime case 
study for climate-ocean-ice interactions. 
The rapid glacial thinning threatens to 
raise global sea level much faster than 
previously estimated. Moreover, because 
glacial meltwater also affects ocean 

buoyancy, stratification, and trace metal 
distribution, the regional oceanography 
and biogeochemistry of the Amundsen 
Sea are likely affected as well. 

The summer sea ice extent in the cen-
tral Amundsen Sea Polynya region shows 
some of the strongest recent declines in 
the Southern Ocean (Figure 1b), com-
parable to the widely reported decreases 
in the Bellingshausen Sea (Parkinson 
and Cavalieri, 2012; Stammerjohn et al., 
2012). In the Amundsen Sea Polynya 
region, the length of the sea ice season 
has declined by 60 ± 9 days since 1979, 
a change largely due to the Amundsen 
Sea Polynya opening earlier in the year 
by 52 ± 9 days. The shorter sea ice season 

facilitates increased solar ocean warming, 
leading to greater ice declines. The loss is 
thought to be primarily due to climate-
related changes in the winds, specifically 
a poleward intensification of the pre-
vailing storm tracks in the Amundsen-
Bellingshausen Sea region (Marshall, 
2007; Stammerjohn et al., 2012).

ASPIRE on RVIB  
Nathaniel B .  Palmer
The Amundsen Sea Polynya is an 
extraordinary place. It takes about two 
weeks by ship to get to the Amundsen 
Sea from the nearest port, and an ice-
classed ABS A2 icebreaker is required to 
make it through the heavy sea ice that 
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guards the coastal polynyas near the 
ice shelf (Figures 1 and 2). Few oceano-
graphic expeditions have made it into 
the Amundsen Sea. The Amundsen 
Sea Polynya thus offered both a critical 
challenge to the US Antarctic Program 
(USAP) research fleet and a unique 
opportunity for studying an important 
but poorly understood, climate-sensitive 
marine system. With extraordinary field 
support provided by RVIB Nathaniel 
B. Palmer, its officers and crew, along 
with the technical support of Raytheon 
Polar Services, an international team of 

scientists (the Amundsen Sea Polynya 
International Research Expedition: 
ASPIRE) investigated regional oceanog-
raphy and productivity in the Amundsen 
Sea Polynya during December 2010 to 
January 2011. The project was a close 
collaboration with the Swedish ice-
breaker Oden, which worked primarily 
in the pack ice to the north, while the 
ASPIRE program was conducted within 
and adjacent to the polynya (Figure 2a). 
Our objective was to investigate why 
the Amundsen Sea Polynya is so much 
more productive than other polynyas 

and whether spatial and seasonal vari-
ability in the region provide insight 
into climate-sensitive mechanisms 
driving carbon fluxes. 

 Onboard the Palmer, we sampled 
the polynya and the adjacent sea ice 
zone with our primary sampling tools: 
conventional and trace metal clean 
conductivity-temperature-depth (CTD)/
rosettes, various net tows for zooplank-
ton, in situ pumps for particulate mate-
rial, a towed camera system for seafloor 
imaging (Seasled from the Woods Hole 
Oceanographic Institution), short-term 
(two- to three-day) floating and long-
term (one-year) moored sediment traps 
for sinking detritus, Smith Mac benthic 
grab for seafloor sediment samples, 
smaller ring nets for additional plankton 
samples, and an autonomous depth-pro-
filing (0–100 m) Webb Slocum glider. We 
also deployed and recovered long-term 
physical oceanographic moorings for 
the Amundsen Sea Embayment Project 
(e.g., Jacobs et al., 2011), and collected 
sea ice and snow samples using a crane-
assisted basket. The ship’s underway 
system continuously measured surface 
water properties: temperature, salinity, 
phytoplankton fluorescence (including 
Fluorescence Induction and Relaxation, 
FIRe; Gorbunov and Falkowski, 2005), 
and oxygen and carbon dioxide concen-
trations. Between stations, discrete water 
samples were also collected from the 
underway system for additional nutrient 
and plankton analyses. Our shipboard 
planning and activities, especially our 
icebreaking efficiency, were greatly 
assisted by near-daily regional sea ice sat-
ellite images collected by the Moderate 
Resolution Imaging Spectroradiometer 
(MODIS; e.g., Figure 2b–d), Advanced 
Microwave Scanning Radiometer for the 
Earth Observing System (AMSR-E), and 
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Envisat, subsampled for our sampling 
region and emailed to us on the ship by 
the Polar Geospatial Center (http://www.
agic.umn.edu).

ASPIRE occupied a dense array of sta-
tions across and along key bathymetric 
features (Figure 2a), including the deep 
Dotson Trough bisecting the continental 
shelf and the shallower plateau to the 
east. We also sampled close to known 
sources of glacial and sea ice meltwater 
(Figure 2b), including the Dotson Ice 
Shelf to the south, the Thwaites Iceberg 
Tongue to the east and the pack ice to 
the north. This high-density sampling 
in the Amundsen Sea Polynya region 
will help us compile for the first time a 
high-resolution, three-dimensional map 
of physical, biological, and biogeochemi-
cal properties, including the presence or 
absence of meltwater and bioavailable 
iron. Although many of our sample and 
data analyses are still underway, here 
we provide further insights to the key 
questions that motivated our sampling 
approach during ASPIRE, and discuss 
some preliminary findings.

 
Produc tivit y in the 
Amundsen Sea Polynya 
2010–2011
During ASPIRE, high near-surface 
chlorophyll a fluorescence was 
found through much of the polynya 
(Figure 2c), corroborated by discrete 
surface chlorophyll a measurements 
exceeding 30 mg m–3. Upon entering the 
polynya in mid-December, we observed 
low values (< 1 mg m–3) along the face 
of the Dotson Ice Shelf and in the sea 
ice zone bordering the polynya to the 
east and north. Intermediate values 
were observed in mid-December in the 
western polynya and in front of the Getz 
Ice Shelf. Highest values (> 20 mg m–3) 

were observed in the central polynya, 
north of 73°40'S, at stations sampled 
after December 20. High phytoplank-
ton biomass was associated with low 
(< 10 µmol L–1) nitrate concentrations 
that showed significant nitrate depletion 
from pre-season surface concentrations 
of ~ 31 µmol L–1. 

Satellite-based estimates over the 
open water season (roughly October 
to March) corroborate high annual 
productivity in the central polynya in 
2010–2011 (Figure 3). Production was 
lower in the west and along the northern 
sea ice edges, as these waters became 
ice-free later in the season and thus had 
a shorter growing season. Lower pro-
duction in the south was likely due to a 
less stable water column. Average daily 
net primary production (NPP) per unit 
area for the polynya in 2010–2011 was 
0.48 ± 0.47 g C m–2 d–1. The maximum 
daily rate was 2.2 g C m–2 d–1. The annual 
NPP per unit area was 88 g C m–2 yr–1, 
integrated over a 185-day period. Total 
annual NPP for the Amundsen Sea 
Polynya in 2010–2011 was 4.0 Tg C yr–1, 
about 20% higher than the average 

for 1997–2010 (3.3 ± 1.1 Tg C yr–1; 
Arrigo et al., 2012).

Qualitative microscopic observations 
during ASPIRE showed that colonial 
P. antarctica dominated the phytoplank-
ton bloom in the central polynya; dia-
toms were also present but at lower con-
centrations. P. antarctica also dominates 
blooms in the Ross Sea Polynya (Arrigo 
et al., 1999) and Pine Island Polynya 
(Alderkamp et al., 2012a). In contrast, 
diatoms dominated marginal ice zones 
sampled on previous Amundsen Sea 
expeditions (March and December 2007; 
Fragoso and Smith, 2012).

The near-surface pCO2 (Figure 2d; 
Takahashi et al., 2011), measured 

underway, was inversely correlated to 
near-surface chlorophyll a (r = 0.76, 
n = 6,600; Mu and Yager, 2012). In the 
central polynya, pCO2 was highly under-
saturated, as low as 100 ppm, nearly 
300 ppm below atmospheric concentra-
tions. Interestingly, it was supersaturated 
in the region near the Dotson Ice Shelf 
where upwelling of Modified CDW 
(MCDW) may be occurring (see below). 
Estimates of CO2 uptake by the undersat-
urated region of the central polynya were 
0.28 g C m–2 d–1, or 2.3 ± 0.5 Tg C yr–1, 
when summed over 185 days (Mu and 
Yager, 2012). This estimate of net com-
munity production (NCP) corresponds 
well with the satellite-based NPP. 

Looking below the surface, within 
the upper 100 m, the Slocum glider 
provided a high-resolution survey of 
the upper water column in the central 
polynya and showed that chlorophyll a 
concentrations were highest in relatively 
warmer (–0.2 to –1°C) and fresher 
waters (33.7–33.8; Figure 4), and that 
these high concentrations often persisted 
down to 60 m. These water properties 
typically reflect the influence of melting 
sea ice, which stratifies the water column 
and allows solar radiation to warm the 
surface waters over time. Thus, warmer 
waters likely have been ice-free longer. 
The high phytoplankton biomass in the 
fresher, warmer waters could also reflect 
the input of Fe or other micronutrients 
associated with sea ice or upwelled, 
glacier-derived meltwater, higher light 
levels in the shallow upper mixed layer, 
or a combination of these factors.

Temperature-salinity (T-S) plots for 
the glider (upper 100 m) and for the 
full-depth shipboard CTD data taken in 
the polynya region (Figure 4b,c) indicate 
three major water masses: (1) Antarctic 
Surface Water, comprising a range of 

http://www.agic.umn.edu
http://www.agic.umn.edu
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seasonally freshened, warmed sur-
face waters; (2) Winter Water, saltier, 
near-freezing water formed by the 
previous winter’s sea ice production; 
and (3) MCDW, the warmest and salti-
est water found in the Amundsen Sea 
Polynya region. We also saw glacial melt-
water layers at depth (e.g., emanating 
from the Dotson Ice Shelf and traversing 
the polynya region). These layers can 
be qualitatively identified in T-S space 
in relation to the mixing line between 
CDW and pure meltwater (the grey dot-
ted line in Figure 4b; Gade, 1979; Wåhlin 

et al., 2010). Typical water masses or 
features within the Dotson Trough 
consisted of (from surface to bottom): 
Antarctic Surface Water, Winter Water, 
glacial meltwater, MCDW. In contrast, 
the water column in some of the shal-
lower regions east of the Dotson Trough 
appeared only to consist of Antarctic 
Surface Water and Winter Water. The 
T-S plot with all CTD data shows many 
of our sampling sites with values near the 
CDW-meltwater mixing line, indicating 
the presence of subsurface meltwater. 
The question we are now exploring 

is where and how this meltwater gets 
entrained into the euphotic zone, as it 
may be a source of bioavailable iron fuel-
ing the intense production. 

Produc tivit y and 
Iron Sources in the 
Amundsen Sea Polynya 
are Climate Sensitive
High interannual variability in 
Amundsen Sea Polynya productiv-
ity invokes strong climate sensitivity. 
As measured by satellite, variability in 
total production in the Amundsen Sea 
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with lower salinity (< 34) and warmer (> –1 °C) water. 
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(Arrigo et al., 2012) appears to be linked 
to the timing of the polynya’s opening 
and its duration. Sea ice distribution 
almost certainly sets the first-order 
control on productivity in polynyas via 
its direct influence on light availability 
and wind-driven mixing. Because of the 
possible co-limitation by light and Fe, an 
important issue is the climatological link 
between changes in sea ice cover and 
changes in ocean circulation and stratifi-
cation. An increase in Fe supply may not 
translate into an increase in production 
or export if there is not also a reduction 
in mixed-layer depth (e.g., Mongin et al., 
2007; Krishnamurthy et al., 2008), or 
vice versa. Reduced mixed-layer depth 
in spring is related to sea ice melt, which 
freshens the surface, inducing shallow 
stratification that subsequently warms 
by increased insolation. But winds may 
break down the seasonal stratification 
and deepen the mixed layer. Changes 
in the timing of sea ice retreat affect 
the timing and magnitude of the ini-
tial bloom period. As described above, 
there has been a strong trend toward 
an earlier spring sea ice retreat in the 
Amundsen Sea Polynya region, which 
may enhance bloom magnitude (Arrigo 
et al., 2012), but how such changes 
might affect trophic interactions and 
carbon export are areas of active research 
(e.g., Ducklow et al., 2012).

The timing and duration of the 
intense phytoplankton bloom in the 
Amundsen Sea Polynya also suggests 
that bioavailable Fe must be supplied 
continuously throughout the summer, 
consistent with recent findings for the 
Ross Sea (Sedwick et al., 2011) and Pine 
Island Polynyas (Gerringa et al., 2012). 
While melting sea ice may supply Fe 
to the polynya edges, it is unlikely that 
this supply can provide sufficient Fe to 

maintain the central polynya bloom for 
its entire summer duration. Instead, Fe 
may be resupplied by periodic or local 
vertical mixing of a deeper Fe pool, 
driven by winds or eddies, or by lateral 
mixing from coastal sources within 
the upper mixed layer. Thus, the key 
questions addressed by our trace metal 
sampling program were: What are the 
sources and pathways of bioavailable Fe 
inputs and how are they delivered to the 
euphotic zone? Do we see a substantial 
pool of dissolved Fe within or just below 
the mixed layer? Does dissolved Fe in the 
euphotic zone increase in proximity to 
the continent? Figure 5 summarizes the 
hypothesized potential pathways for the 
delivery of Fe to the polynya, based in 
part on early ASPIRE results. Although 
not all of these mechanisms are dis-
cussed in the following, this schematic 
diagram provides a summary of the 
pathways being investigated through the 
developing ASPIRE data set.

The increases in MCDW on the con-
tinental shelf (Thoma et al., 2008), and 
the associated melting of ice shelves 
and marine glaciers (Shepherd et al., 
2004; Martinson et al., 2008; Jacobs 
et al., 2011) may supply a substantial 
flux of bioavailable iron (Hiscock et al., 
2003; Helene Planquette, National 
Oceanographic Centre, pers. comm., 
May 30, 2012) as well as affect water 
column stability in the polynya. ASPIRE 
observations confirmed the presence 
of MCDW at depth (first identified 
aboard the Palmer in 1994; Hellmer et al. 
1998; with subsequent measurements 
in 2000, 2007, and 2009; Wåhlin et al., 
2010; Jacobs et al., 2011). CDW gains 
access to the continental shelf at the shelf 
break, particularly at seafloor depres-
sions, and ponds in glacially scoured 
troughs that extend deep beneath the 

ice shelves. It may preferentially enter 
the eastern Amundsen Sea at depth 
(Walker et al., 2007; Thoma et al., 2008) 
with little temperature/salinity modifi-
cation (Jacobs et al., 2011); hence, the 
Amundsen Sea could represent an 
end member among Antarctic mar-
gin systems influenced by Antarctic 
Circumpolar Current-regulated inputs. 

The glacial source of iron is hypoth-
esized to result from the partial dissolu-
tion of minerals embedded in basal ice 
(Raiswell and Canfield, 2012), and also 
from the reaction of terrestrial Fe par-
ticles with seawater as they are released 
to suspension by ~ 2°C MCDW circulat-
ing under the major ice shelves (Crossen, 
Dotson, and Getz) along the southern 
polynya border, adding meltwater and 
increasing buoyancy and vertical mixing. 
Recent work on circulation under the 
Pine Island Glacier (Jenkins et al., 2010; 
Jacobs et al., 2011) suggests that water 
emerges with substantial concentrations 
of suspended particles and may have 
high dissolved Fe concentrations as a 
result of basal melting and/or sediment 
resuspension (near the grounding line; 
Gerringa et al., 2012). Productivity in the 
adjacent Pine Island Polynya appears to 
be fertilized by this input (Alderkamp 
et al., 2012a). Analysis of ASPIRE sam-
ples collected adjacent to the Dotson Ice 
Shelf suggest that outflow from under 
this major ice shelf has a detectable melt-
water fraction (Randall-Goodwin, 2012) 
and is indeed enriched in dissolved and 
particulate Fe, from 600 m depth all the 
way up to the subeuphotic zone at 80 m. 
These relatively buoyant waters can be 
traced throughout the Dotson Trough 
region and may mix further into the 
euphotic zone as they spread north and 
interact with water masses in the central 
polynya. This possibility raises additional 
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questions for the ASPIRE team: Can 
we trace meltwater layer(s) emanating 
from the Dotson Ice Shelf? If meltwater 
is present at depth, how does it then 
become available to the euphotic zone?

If ice shelves are important Fe sources, 
then icebergs resulting from ice shelf 
calving may also play a role in supplying 

Fe to the surface ocean (Lin et al., 2011). 
ASPIRE was able to sample close to a 
free-drifting iceberg. Our preliminary 
findings suggest that this iceberg was 
acting to stimulate vigorous verti-
cal mixing (Randall-Goodwin, 2012), 
consistent with recent studies near a 
Weddell Sea iceberg (Stephenson et al., 

2011), and that this physical mechanism, 
spawned by drifting icebergs, may mix 
subsurface inventories of dissolved Fe 
into the euphotic zone, supplementing 
or exceeding Fe inputs from the melt-
ing iceberg itself.

The quantification of these sources 
and pathways of Fe delivery will be 

Figure 5. Cutaway diagram of the Amundsen Sea Polynya showing processes thought to contribute dissolved and particulate Fe to the polynya water column. 
The Dotson Ice Shelf is depicted forming part of the southern polynya boundary, sea ice is on all other sides, and an iceberg is drifting north through the open 
water, as observed during ASPIRE. Phytoplankton (green ovals) are growing dominantly in the central polynya, within the euphotic zone (lower boundary is 
dotted line). Modified Circumpolar Deepwater (MCDW) flows south from the shelf break and receives Fe from sedimentary sources (golden rectangles) as 
it interacts with the seafloor both on the open continental shelf and as it flows under the ice shelf. Resuspended sedimentary Fe may also be mixed up into 
the water column in the open polynya, where wind events may bring it into contact with the euphotic zone. As the ~ 1–2°C MCDW flows under the ice shelf, 
basal ice is melted and the long-entombed mineral particles (black triangles) are released, joining the resuspended material, and injected into the polynya as 
MCDW exits the ice shelf near the western end. This outflow is made more buoyant by the fresh meltwater addition, and it rises as it flows north, helping to 
mix dissolved and particulate Fe of glacial origin into the upper water column. The wind-blown iceberg is also melting as it traverses the polynya, and may have 
basal Fe minerals on its bottom or lateral faces, depending on whether it has rotated from its original vertical position. Just as importantly, the moving iceberg 
generates powerful vertical mixing in its wake eddies, helping to mix subsurface Fe into the euphotic zone. Sea ice contains both Fe mineral particles that were 
stripped from the water column during its formation, and Fe-rich phytoplankton cells, both of which are released to surface waters when the sea ice melts. 
ASPIRE investigated each of these processes and is working to understand their relative importance in supplying the Fe that fuels the intense season-long pro-
ductivity in the polynya.
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inferred from ASPIRE data using three-
dimensional maps of both dissolved and 
particulate Fe distributions, interpreted 
within the context of physical hydrogra-
phy, current measurements, and biologi-
cal productivity. Measurements of addi-
tional bioactive metals (dissolved Mn, 
Zn, Cu, Ni, and Co, as well as these and 
other elements in suspended particles), 
and of neodymium isotope ratios, are 
helping us track the processes that sup-
ply and remove Fe. Analyses of particles 
collected during drifting sediment trap 
deployments in the central polynya will 
provide estimates of the composition and 
flux of particles removing Fe from the 
euphotic zone. ASPIRE will produce a 
comprehensive and quantitative assess-
ment of the dynamics of Fe and related 
bioactive metals in this highly productive 
and important Antarctic shelf system.

To determine how light and Fe avail-
ability constrain productivity in the 
Amundsen Sea Polynya, and to explore 
the interactions between these two 
variables, bioassay experiments were 
performed during ASPIRE in which 
Fe was added to phytoplankton assem-
blages collected at several stations, the 
assemblages were incubated under 
various light conditions, and they were 
then compared to control treatments 
without Fe addition. The incubations 
were monitored for changes in phyto-
plankton photophysiology, productiv-
ity, and microheterotrophic activity. 
Preliminary results suggest that Fe addi-
tion stimulated phytoplankton growth 
and photosynthesis rates at some, but 
not all, stations in the polynya, indicat-
ing regionally diverse Fe nutritional 
status of the phytoplankton assemblages 
(Alderkamp et al., 2012b). This dif-
ferentiates the Amundsen Sea Polynya 
from the Pine Island Polynya, where Fe 

additions did not affect phytoplankton 
growth during the phytoplankton bloom 
in 2008–2009 (Mills et al., 2012). The 
ensuing task is to relate these spatial pat-
terns to the availability of dissolved and 
particulate Fe, and to variations in light 
and in mixing environments.

The Fate of Produc tivit y in 
the Amundsen Sea Polynya 
Climate-driven variability in primary 
production is only part of the story. 
A key conceptual framework in bio-
logical oceanography is the idea that the 
structure of planktonic communities 
profoundly affects export and sequestra-
tion of organic material (the biological 
carbon pump) and the chemical cycling 
of nutrients (Michaels and Silver 1988; 
Legendre and Le Fevre 1995; Ducklow 
et al., 2001b). Thus, ASPIRE was also 
interested in how climate may affect 
zooplankton community structure 
(Smetacek et al., 2004; Murphy et al., 
2007), bacterial activity and commu-
nity structure (Ducklow and Yager, 
2007), the efficiency of organic matter 
export (Smith and Dunbar, 1998; Arrigo 
et al., 1999), and CO2 uptake by the 
coastal Antarctic (Arrigo et al., 2008b). 
Ultimately, we hope to understand how 
climate affects overall carbon sequestra-
tion by the Amundsen Sea Polynya, and 
how this sequestration may serve as a 
feedback to increasing atmospheric CO2 
concentrations. Once all the data are in, 
a full carbon budget exercise is planned 
to better determine the microbial fate of 
carbon in the polynya. 

Whether a polynya ecosystem is 
carbon “retentive” (sensu Wassmann, 
1998) or exports carbon to depth can 
vary seasonally or interannually and is 
sensitive to local forcing. Unfortunately, 
the mechanisms, which are related to 

bloom magnitude and community struc-
ture (Karl, 1993), are poorly understood 
(Boyd and Trull, 2007). Zooplankton 
consume phytoplankton and particulate 
material and convert them partially into 
rapidly sinking fecal pellets as well as 
some dissolved material. The degree to 
which sinking particles are remineralized 
depends on the activities of microorgan-
isms responsible for enzymatically con-
verting the organic matter to a dissolved 
form that can be incorporated and then 
respired (Azam and Long, 2001; Simon 
et al., 2002). Bacteria in polynyas are 
known to play important roles in regu-
lating carbon and nutrient fluxes and 
to respond dynamically to the changes 
in environmental conditions associated 
with seasonal variation (reviewed by 
Ducklow and Yager, 2007). Top-down 
pressures on bacteria (e.g., viruses or 
bacteriovores) may shunt material from 
the sinking to the dissolved pool, leading 
to lower export (Fuhrman, 1992), or it 
may simply limit bacterial remineraliza-
tion, enhancing export. 

These processes were all observed by 
ASPIRE; overall, preliminary indications 
are that the Amundsen Sea Polynya is a 
fairly efficient export system. Estimates 
of air-sea gas exchange (similar to NCP) 
are about 60% of independent estimates 
of NPP, suggesting high export efficiency. 
ASPIRE observations support sinking 
of phytoplankton to depths below the 
euphotic zone and ultimately to the 
sediment: we found high chlorophyll a 
containing material (“green” particles) 
on filters collected from the in situ 
pumps deployed below the euphotic 
zone, there was an abundance of bright 
green material in the short term (two to 
three day) floating sediment traps (60 m, 
150 m, and 300 m), and greenish sedi-
ments were collected by the Smith Mac 
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benthic grab. Imaging of the seafloor 
using a towed camera system (Seasled) 
near the southeastern Dotson Trough 
(73.6–73.7°S, 112–113°W) provided no 
visual evidence for deposition of phyto-
detritus. However, satellite ocean color 
images of that area also suggest that a 
bloom had not yet developed there at the 
time of observations (December 18). 

Zoopl ankton
In contrast to the high phytoplankton 
biomass described above, observations 
from zooplankton net tows suggest a 
surprisingly low overall zooplankton 
biovolume at all depths (maximum was 
0.5 mL m–3; but typically < 0.1 mL m–3) 
with a subsurface maximum typically 
between 60 m and 150 m. The most 
abundant of the large zooplankton spe-
cies were the euphausiid Euphausia 
crystallarophias and the calanoid cope-
pod Paraeuchaeta antarctica. Very 
few zooplankton were observed in the 
upper 60 m for most of the stations with 
the exception of E. crystallarophias, 
which tended to stay within the upper 
150 m. Calanoides acutus and Metridia 
gerlachi were important below 60 m. 
The upper water column samples 
were dark green because of very high 
Phaeocystis cell densities. This observa-
tion might confirm earlier studies that 
Phaeocystis is not readily grazed by 
zooplankton. The deeper nets collected 

Paraeuchaeta antarctica, the amphipod 
Orchomene spp., and several species 
of gelatinous zooplankton. Other krill 
species were observed in very low abun-
dances. Nearly all of the krill species 
were in juvenile or larval forms. We also 
found that the zooplankton community 
structure in the polynya differed sig-
nificantly from that observed near the 

shelf break in the pack ice (Station 68; 
Figure 2a). Preliminary data therefore 
suggest that the polynya zooplankton 
community was still developing, and 
that significant zooplankton impact 
on the surface bloom likely occurs 
later in the season.

Microorganisms
Data from stations throughout the 
Amundsen Sea Polynya revealed a 
large spatial heterogeneity of microbial 
biomass. Flow-cytometric enumera-
tion of bacteria, viruses, and protozoa 
showed a distribution corresponding 
to the abundance of primary produc-
ers and their activity, and decreasing 
abundance with depth. Bacterial abun-
dance varied from 1.2–7.5 x 108 cells L–1 
within the studied region, whereas the 
corresponding range for viruses was 
1.6–8.2 x 109 viruses L–1. These numbers 
are similar to earlier estimates from 
other productive regions of the Southern 
Ocean (Granéli et al., 2004). 

Preliminary results (Williams et al., 
2012) from measurements of bacterial 
growth, respiration, exoenzyme activi-
ties, and substrate utilization indicate 
a psychrophilic (cold-loving), often 
particle-associated, bacterial community 
that was actively growing and respir-
ing at rates comparable to or in excess 
of rates previously measured during 
peak bloom periods in the Ross Sea 
(Ducklow et al., 2001a). Depth inte-
grated bacterial production ranged from 
0.2–2.8 mg C m–2 d–1, with maximum 
volumetric rates (0.2–4 µg C L–1 d–1) 
near the surface. Near-surface respira-
tion rates were typically 10–20 times 
higher than growth rates, so gross 
growth efficiencies averaged 6 ± 3%, with 
the highest efficiency (16%) correspond-
ing to the highest bacterial productivity. 
Our estimate of bacterial carbon demand 
(3–67 mg C m–2 d–1) seems fairly low 
(< 15%) relative to the substantial rates 
of primary production (reported above), 
but it is consistent with observations of 
an efficient biological pump. Typically, 
about 40% of the organic matter pro-
duced in marine waters is channelled 
through heterotrophic bacteria living in 
the water column (Duarte and Cébrian, 
1996). We did observe very high rates of 
bacterial activity on material collected by 
floating sediment traps, indicating that 
particles are remineralized as they sink. 

Ongoing work aims to link vari-
ability in activity to variation in the 
composition of the microbiome. Next-
generation sequencing-enabled analyses 
of 16S rRNA gene assemblages docu-
mented highly diverse communities of 
bacterioplankton, where the composition 
was strongly coupled to discrete water 
masses and also influenced by productiv-
ity and other water characteristics. We 
hypothesize that the significance and 

 “…ASPIRE is moving us forward in 
our understanding of ecosystem change 
in an important polynya system.” 
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balance of key microbial processes are 
intimately linked to community compo-
sition (Bertilsson et al., 2007) and that 
a mechanistic understanding of how 
microbial communities are organized 
will help us understand constraints and 
controls in the polynya, as well as their 
biogeochemical significance.

Pol ar Regions are 
Changing R apidly
What does the future hold for the 
Amundsen Sea Polynya? Overall, the 
observed reduction in summer sea ice 
extent (1979–2010 trend; Parkinson and 
Cavalieri, 2012) and the length of the sea 
ice season (Stammerjohn et al., 2012) 
are likely to continue or perhaps acceler-
ate in the near term. Similarly, thinning 
rates of nearby glaciers are accelerating 
(Rignot, 2008), and thus glacial melt-
water effects on physical, biological, 
and biogeochemical properties of the 
polynya will increase in the near future.

Overall, warming will result in strati-
fication and melting of both sea ice and 
ice shelves, and will likely increase the 
availability of biologically limiting fac-
tors such as iron and light (Boyd and 
Doney, 2002). The air-sea carbon flux of 
seasonally ice-covered oceans is sensi-
tive to changes in the timing of seasonal 
sea ice because of the balance between 
the potential for ventilation of CO2-
rich waters in late winter/early spring 
versus CO2 draw down by high rates of 
biological productivity in spring/sum-
mer (Yager et al., 1995; Miller et al., 
2002; Takahashi et al. 2002; Sweeney, 
2003). Within the polynya, unstable 
upper water columns due to upwelling 
of modified CDW and/or glacial melt-
water introduction below the euphotic 
zone may decrease light availability 
close to glaciers (Alderkamp et al., 

2012a) and enhance CO2 outgassing. 
Phytoplankton assemblage composition 
may change (Arrigo et al., 1999), which 
may in turn alter carbon export effi-
ciency (Boyd and Trull, 2007) and exert 
significant biogeochemical feedbacks on 
global climate. The near-future impacts 
of anthropogenic changes on ocean 
biology and biogeochemistry are just 
now being explored. 

With the outstanding support of the 
USAP, Swedish Polar Research, and the 
Palmer, ASPIRE is moving us forward 
in our understanding of ecosystem 
change in an important polynya system. 
Based on ASPIRE’s preliminary find-
ings of high phytoplankton productivity, 
the potential for glacially derived Fe to 
be a source of Fe to the euphotic zone, 
an efficient biological pump, and signs 
of carbon export out of the euphotic 
zone, we expect that the Amundsen Sea 
Polynya will likely become more pro-
ductive and a greater carbon sink in the 
short term as sea ice and ice shelf melt 
contribute to the light and iron require-
ments of the phytoplankton. However, 
continued dramatic changes are likely to 
trigger nonlinear responses that are hard 
to predict. At the extreme, the complete 
loss of sea ice, and the transformation of 
the polynya system to a year-round open 
water system (as with the Northeast 
Water Polynya in the Arctic), would no 
doubt threaten the extraordinary attri-
butes of the Amundsen Sea Polynya.
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