Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 02

View Issue TOC
Volume 25, No. 2
Pages 80 - 95

OpenAccess

Are Any Coastal Internal Tides Predictable?

By Jonathan D. Nash , Emily L. Shroyer, Samuel M. Kelly , Mark E. Inall , Timothy F. Duda, Murray D. Levine, Nicole L. Jones , and Ruth C. Musgrave 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Surface tides are the heartbeat of the ocean. Because they are controlled by Earth’s motion relative to other astronomical objects in our solar system, surface tides act like clockwork and generate highly deterministic ebb and flow familiar to all mariners. In contrast, baroclinic motions at tidal frequencies are much more stochastic, owing to complexities in how these internal motions are generated and propagate. Here, we present analysis of current records from continental margins worldwide to illustrate that coastal internal tides are largely unpredictable. This conclusion has numerous implications for coastal processes, as across-shelf exchange and vertical mixing are, in many cases, strongly influenced by the internal wave field.

Citation

Nash, J.D., E.L. Shroyer, S.M. Kelly, M.E. Inall, T.F. Duda, M.D. Levine, N.L. Jones, and R.C. Musgrave. 2012. Are any coastal internal tides predictable? Oceanography 25(2):80–95, https://doi.org/10.5670/oceanog.2012.44.

References
    Alford, M.H. 2001. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. Journal of Physical Oceanography 31:2,359–2,368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.
  1. Alford, M.H. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423:159–162, https://doi.org/10.1038/nature01628.
  2. Alford, M.H., and Z. Zhao. 2007. Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. Journal of Physical Oceanography 37:1,829–1,848, https://doi.org/10.1175/JPO3085.1.
  3. Arbic, B.K., J.G. Richman, J.F. Shriver, P.G. Timko, E.J. Metzger, and A.J. Wallcraft. 2012. Global modeling of internal tides within an eddying ocean general circulation model. Oceanography 25(2):20–29, https://doi.org/10.5670/oceanog.2012.38.
  4. Baines, P.G. 1982. On internal tide generation models. Deep-Sea Research Part A 29:307–338, https://doi.org/10.1016/0198-0149(82)9009
    8-X.
  5. Boehm, A.B., B.F. Sanders, and C.D. Winant. 2002. Cross-shelf transport at Huntington Beach. Implications for the fate of sewage discharged through an offshore ocean outfall. Environmental Science & Technology 36:1,899–1,906, https://doi.org/10.1021/es0111986.
  6. Briscoe, M.G. 1984. Oceanography: Tides, solitons and nutrients. Nature 312:15, https://doi.org/10.1038/312015a0.
  7. Carter, G.S., O.B. Fringer, and E.D. Zaron. 2012. Regional models of internal tides. Oceanography 25(2):56–65, https://doi.org/10.5670/oceanog.2012.42.
  8. Carter, G.S., M.A. Merrifield, J.M. Becker, K. Katsumata, M.C. Gregg, D.S. Luther, M.D. Levine, T.J. Boyd, and Y.L. Firing. 2008. Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. Journal of Physical Oceanography 38:2,205–2,223, https://doi.org/10.1175/2008JPO3860.1.
  9. Colosi, J.A., and W. Munk. 2006. Tales of the venerable Honolulu tide gauge. Journal of Physical Oceanography 36:967–996, https://doi.org/10.1175/JPO2876.1.
  10. Cottier, F., M. Inall, and G. Griffiths. 2004. Seasonal variations in internal wave energy in a Scottish sea loch. Ocean Dynamics 54:340–347, https://doi.org/10.1007/s10236-003-0064-5.
  11. Dushaw, B.D., P.F. Worcester, and M.A. Dzieciuch. 2011. On the predictability of mode-1 internal tides. Deep Sea Research Part I 58:677–698, https://doi.org/10.1016/j.dsr.2011.04.002.
  12. Egbert, G.D., A.F. Bennett, and M.G.G. Foreman. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research 99:24,821–24,852, https://doi.org/10.1029/94JC01894.
  13. Garrett, C. 1972. Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature 238:441–443, https://doi.org/10.1038/238441a0.
  14. Gerkema, T., F.P.A. Lam, and L.R.M. Maas. 2004. Internal tides in the Bay of Biscay: Conversion rates and seasonal effects. Deep Sea Research Part II 51:2,995–3,008, https://doi.org/10.1016/j.dsr2.2004.09.012.
  15. Green, J.A.M., J.H. Simpson, S. Legg, and M.R. Palmer. 2008. Internal waves, baroclinic fluxes and mixing at the European shelf edge. Continental Shelf Research 28:937–950, https://doi.org/10.1016/j.csr.2008.01.014.
  16. Hollaway, P.E. 1988. Climatology of internal tides at a shelf-break location on the Australian North West Shelf. Marine and Freshwater Research 39:1–18, https://doi.org/10.1071/MF9880001.
  17. Holloway, P.E., P.G. Chatwin, and P. Craig. 2001. Internal tide observations from the Australian north west shelf in summer 1995. Journal of Physical Oceanography 31:1,182–1,199, https://doi.org/10.1175/1520-0485(2001)031<1182:ITOFTA>2.0.CO;2.
  18. Inall, M.E., T.P. Rippeth, and T.J. Sherwin. 2000. Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. Journal of Geophysical Research 105:8,687–8,705, https://doi.org/10.1029/1999JC900299.
  19. Inall, M., D. Aleynik, T. Boyd, M. Palmer, and J. Sharples. 2011. Internal tide coherence and decay over a wide shelf sea. Geophysical Research Letters 38, L23607, https://doi.org/10.1029/2011GL049943.
  20. Kelly, S.M., and J.D. Nash. 2010. Internal-tide generation and destruction by shoaling internal tides. Geophysical Research Letters 37, L23611, https://doi.org/10.1029/2010GL045598.
  21. Kingsford, M.J., and J.H. Choat. 1986. Influence of surface slicks on the distribution and onshore movements of small fish. Marine Biology 91:161–171, https://doi.org/10.1007/BF00569432.
  22. Lee, C.M., E. Kunze, T.B. Sanford, J.D. Nash, M.A. Merrifield, and P.E. Holloway. 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. Journal of Physical Oceanography 36:1,165–1,183, https://doi.org/10.1175/JPO2886.1.
  23. Lerczak, J.A., C.D. Winant, and M.C. Hendershott. 2003. Observations of the semidiurnal internal tide on the southern California slope and shelf. Journal of Geophysical Research 108, 3068, https://doi.org/10.1029/2001JC001128.
  24. Li, Q., and D.M. Farmer. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography 41:1,345–1,363, https://doi.org/10.1175/2011JPO4587.1.
  25. Lim, K., G.N. Ivey, and R.I. Nokes. 2008. The generation of internal waves by tidal flow over continental shelf/slope topography. Environmental Fluid Mechanics 8:511–526, https://doi.org/10.1007/s10652-008-9085-4.
  26. MacKinnon, J.A., and M.C. Gregg. 2003. Shear and baroclinic energy flux on the summer New England shelf. Journal of Physical Oceanography 33:1,462–1,475, https://doi.org/10.1175/1520-0485(2003)033<1462:SABEFO>2.0.CO;2.
  27. Martini, K.I., M.H. Alford, E. Kunze, S.M. Kelly, and J.D. Nash. 2011. Observations of internal tides on the Oregon continental slope. Journal of Physical Oceanography 41:1,772–1,794, https://doi.org/10.1175/2011JPO4581.1.
  28. Moum, J.N., J.D. Nash, and J.M. Klymak. 2008. Small-scale processes in the coastal ocean. Oceanography 21(4):22–33, https://doi.org/10.5670/oceanog.2008.02.
  29. Murphy, A.H. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review 116:2,417–2,424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.
  30. Nash, J. D., S.M. Kelly, E.L. Shroyer, J.N. Moum, and T.F. Duda. In press. The unpredictable nature of internal tides on the continental shelf. Journal of Physical Oceanography.
  31. Nash, J.D., E. Kunze, J.M. Toole, and R.W. Schmitt. 2004. Internal tide reflection and turbulent mixing on the continental slope. Journal of Physical Oceanography 34:1,117–1,134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.
  32. Noble, M., B. Jones, P. Hamilton, J. Xu, G. Robertson, L. Rosenfeld, and J. Largier. 2009. Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA. Continental Shelf Research 29:1,768–1,785, https://doi.org/10.1016/j.csr.2009.04.008.
  33. Osborne, A.R., T.L. Burch, and R.I. Scarlet. 1978. The influence of internal waves on deep-water drilling. Journal of Petroleum Technology 30:1,497–1,504, https://doi.org/10.2118/6913-PA.
  34. Osborne, J.J., A.L. Kurapov, G.D. Egbert, and P.M. Kosro. 2011. Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon shelf. Journal of Physical Oceanography 41:2,037–2,062, https://doi.org/10.1175/JPO-D-11-02.1.
  35. Pineda, J. 1999. Circulation and larval distribution in internal tidal bore warm fronts. Limnology and Oceanography 44:1,400–1,414.
  36. Pingree, R.D., G.T. Mardell, and A.L. New. 1986. Propagation of internal tides from the upper slopes of the Bay of Biscay. Nature 321:154–158, https://doi.org/10.1038/321154a0.
  37. Pingree, R.D., and G.T. Mardell. 1981. Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break. Royal Society of London Philosophical Transactions Series A 302:663–678, https://doi.org/10.1098/rsta.1981.0191.
  38. Pingree, R.D., and A.L. New. 1991. Abyssal penetration and bottom reflection of internal tide energy into the Bay of Biscay. Journal of Physical Oceanography 21:28–39, https://doi.org/10.1175/1520-0485(1991)021<0028:APABRO>2.0.CO;2.
  39. Pingree, R., and A. New. 1995. Structure, seasonal development and sunglint spatial coherence of the internal tide on the Celtic and Armorican shelves and in the Bay of Biscay. Deep Sea Research Part I 42:245–284, https://doi.org/10.1016/0967-0637(94)00041-P.
  40. Rainville, L., T.M.S. Johnston, G.S. Carter, M.A. Merrifield, R. Pinkel, P.F. Worcester, and B.D. Dushaw. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. Journal of Physical Oceanography 40:311–325, https://doi.org/10.1175/2009JPO4256.1.
  41. Rainville, L., and R. Pinkel. 2006. Propagation of low-mode internal waves through the ocean. Journal of Physical Oceanography 36:1,220–1,236, https://doi.org/10.1175/JPO2889.1.
  42. Ramp, S.R., Y.J. Yang, and F.L. Bahr. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics 17:481–498, https://doi.org/10.5194/npg-17-481-2010.
  43. Rayson, M.D., G.N. Ivey, N.L. Jones, M.J. Meuleners, and G.W. Wake. 2011. Internal tide dynamics in a topographically complex region: Browse Basin, Australian North West Shelf. Journal of Geophysical Research 116, C01016, https://doi.org/10.1029/2009JC005881.
  44. Savidge, D.K., C.R. Edwards, and M. Santana. 2007. Baroclinic effects and tides on the Cape Hatteras continental shelf. Journal of Geophysical Research 112, C09016, https://doi.org/10.1029/2006JC003832.
  45. Scotti, A., R.C. Beardsley, B. Butman, and J. Pineda. 2008. Shoaling of nonlinear internal waves in Massachusetts Bay. Journal of Geophysical Research 113, C08031, https://doi.org/10.1029/2008JC004726.
  46. Shanks, A.L. 2006. Mechanisms of cross-shelf transport of crab megalopae inferred from a time series of daily abundance. Marine Biology 148:1,383–1,398, https://doi.org/10.1007/s00227-005-0162-7.
  47. Sharples, J., J.F. Tweddle, J.A. Mattias Green, M.R. Palmer, Y.-N. Kim, A.E. Hickman, P.M. Holligan, C.M. Moore, T.P. Rippeth, J.H. Simpson, and V. Krivtsov. 2007. Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnology and Oceanography 52(5):1,735-1,747.
  48. Sharples, J., C.M. Moore, A.E. Hickman, P.M. Holligan, J.F. Tweddle, M.R. Palmer, and J.H. Simpson. 2009. Internal tidal mixing as a control on continental margin ecosystems. Geophysical Research Letters 36, L23603, https://doi.org/10.1029/2009GL040683.
  49. Shearman, R.K., and K.H. Brink. 2010. Evaporative dense water formation and cross-shelf exchange over the northwest Australian inner shelf. Journal of Geophysical Research 115, C06027, https://doi.org/10.1029/2009JC005931.
  50. Sherwin, T.J. 1988. Analysis of an internal tide observed on the Malin Shelf, north of Ireland. Journal of Physical Oceanography 18:1,035–1,050, https://doi.org/10.1175/1520-0485(1988)018<1035:AOAITO>2.0.CO;2.
  51. Sherwin, T.J., V.I. Vlasenko, N. Stashchuk, D.R. Jeans, and B. Jones. 2002. Along-slope generation as an explanation for some unusually large internal tides. Deep Sea Research Part I 49:1,787–1,799, https://doi.org/10.1016/S0967-0637(02)00096-1.
  52. Shroyer, E.L., J.N. Moum, and J.D. Nash. 2010a. Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophysical Research Letters 37, L08601, https://doi.org/10.1029/2010GL042715.
  53. Shroyer, E.L., J.N. Moum, and J.D. Nash. 2010b. Energy transformations and dissipation of nonlinear internal waves over New Jersey’s continental shelf. Nonlinear Processes in Geophysics 17:345–360, https://doi.org/10.5194/npg-17-345-2010.
  54. Smyth, W.D., and J.N. Moum. 2012. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25(2):140–149, https://doi.org/10.5670/oceanog.2012.49.
  55. Souza, A.J., J.H. Simpson, M. Harikrishnan, and J.J. Malarkey. 2001. Flow structure and seasonality in the Hebridean slope current. Oceanologica Acta 24:63–76, https://doi.org/10.1016/S0399-1784(00)01103-8.
  56. Thomas, H., Y. Bozec, and H.J.W. de Baar. 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304:1,005–1,008, https://doi.org/10.1126/science.1095491.
  57. Van Gastel, P., G.N. Ivey, M.J. Meuleners, J.P. Antenucci, and O. Fringer. 2009. The variability of the large-amplitude internal wave field on the Australian North West Shelf. Continental Shelf Research 29:1,373–1,383, https://doi.org/10.1016/j.csr.2009.02.006.
  58. Venayagamoorthy, S.K., and O.B. Fringer. 2012. Examining breaking internal waves on a shelf slope using numerical simulations. Oceanography 25(2):132–139, https://doi.org/10.5670/oceanog.2012.48.
  59. Wunsch, C. 1975. Internal tides in the ocean. Reviews of Geophysics 13:167–182, https://doi.org/10.1029/RG013i001p00167.
  60. Zilberman, N.V., M.A. Merrifield, G.S. Carter, D.S. Luther, M.D. Levine, and T.J. Boyd. 2011. Incoherent nature of M2 internal tides at the Hawaiian Ridge. Journal of Physical Oceanography 41:2,021–2,036, https://doi.org/10.1175/JPO-D-10-05009.1.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.