Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 03

View Issue TOC
Volume 25, No. 3
Pages 84 - 89

What Lies Beneath? Interdisciplinary Outcomes of the ANDRILL Coulman High Project Site Surveys on the Ross Ice Shelf

Frank R. Rack Robert (Bob) Zook Richard H. LevyRichard LimeburnerCraig Stewart Michael J.M. Williams Bruce Luyendyk The ANDRILL Coulman High Project Site Survey Team
Article Abstract

Extensive field operations were conducted on the northwestern Ross Ice Shelf in Antarctica from November 2010 through January 2011. A significant amount of equipment, supplies, and people safely traversed from McMurdo Station to establish a series of combined United States–New Zealand field camps at locations northeast of Ross Island. The ANDRILL (ANtarctic geological DRILLing) hot water drill system was used to melt multiple access holes through the ice shelf at each site to deploy a variety of sediment coring tools, cameras, and oceanographic instruments, as well as a remotely operated vehicle to characterize the ice shelf and sub-ice environment. These studies will contribute to future proposed geological drilling as part of the ANDRILL Coulman High Project.


Rack, F.R., R. Zook, R.H. Levy, R. Limeburner, C. Stewart, M.J.M. Williams, B. Luyendyk, and the ANDRILL Coulman High Project Site Survey Team. 2012. What lies beneath? Interdisciplinary outcomes of the ANDRILL Coulman High Project site surveys on the Ross Ice Shelf. Oceanography 25(3):84–89, https://doi.org/10.5670/oceanog.2012.79.


Arrigo, K.R., and G.L. van Dijken. 2003. Impact of iceberg C-19 on Ross Sea primary productivity. Geophysical Research Letters 30(16):1,836–1,839, https://doi.org/10.1029/2003GL017721.

Arzeno, I.B., R. Beardsley, B. Owens, R. Limeburner, L. Padman, M. Williams, C. Stewart, C. Lee, M. Dinniman, and S. Springer. 2012a. Tides under the Ross Ice Shelf front: Contributions to mixing and melting. Paper presented at the Ocean Sciences Meeting, Salt Lake City, UT, February 20–24, 2012, TOS/AGU/ASLO Abstract Book, p. 17.

Arzeno, I.B., R. Beardsley, B. Owens, R. Limeburner, L. Padman, M. Williams, C. Stewart, and C. Lee. 2012b. Looking under the Ross Ice Shelf: Tidal and subtidal variability. Paper presented at the Ocean Sciences Meeting, February 20–24, 2012 (Salt Lake City, UT), TOS/AGU/ASLO Abstract Book, p. 17.

Augustine, N.R., T. Allen, C.E. Dorman, H.W. Ducklow, B. Gordon, R. K. Harrison, D. Hartill, G. Jugie, L.J. Lanserotti, D.J. McNabb, and others. 2012. More and Better Science in Antarctica through Increased Logistical Effectiveness, Report of the U.S. Antarctic Program Blue Ribbon Panel. Study conducted at the request of the White House Office of Science and Technology Policy and the National Science Foundation, Washington, DC, 224 pp., http://www.nsf.gov/od/opp/usap_special_review/usap_brp/rpt/index.jsp.

Cazenave, F., R. Zook, D. Carroll, M. Flagg, and S. Kim. 2011. Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica. The Journal of Ocean Technology 6(3):39–58.

Decesari, R.C. 2006. The Mesozoic and Cenozoic depositional, structural, and tectonic evolution of the Ross Sea, Antarctica. PhD thesis, University of California, Santa Barbara.

Decesari, R.C., D.S. Wilson, B.P. Luyendyk, and M. Faulkner. 2007. Cretaceous and Tertiary extension throughout the Ross Sea, Antarctica. In A Keystone in a Changing World—Online Proceedings of the 10th International Symposium on the Antarctic Earth Sciences. A.K. Cooper, C.R. Raymond, and the 10th ISAES Editorial Team, eds, US Geological Survey Open File Report 2007-1047:098, http://pubs.usgs.gov/of/2007/1047/srp/srp098/of2007-1047srp098.pdf.

Dinniman, M.S., J.M. Klinck, and W.O. Smith Jr. 2007. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. Journal of Geophysical Research 112, C11013, https://doi.org/10.1029/2006JC004036.

Dinniman, M.S., J.M. Klinck, and W.O. Smith Jr. 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Research Part II 58:1,508–1,523, https://doi.org/10.1016/j.dsr2.2010.11.013.

Griffiths, H.J. 2010. Antarctic marine biodiversity—What do we know about the distribution of life in the Southern Ocean? PLoS ONE 5(8):e11683, https://doi.org/10.1371/journal.pone.0011683.

Gutt, J. 2001. High latitude Antarctic benthos: A “coevolution” of nature conservation and ecosystem research? Ocean and Polar Research 23(4):411–417.

Holland, D.M., S.S. Jacobs, and A. Jenkins. 2003. Modelling the ocean circulation beneath the Ross Ice Shelf. Antarctic Science 15(1):13–23, https://doi.org/10.1017/S0954102003001019.

Horgan, H.J., R.T. Walker, S. Anandakrishnan, and R.B. Alley. 2012. Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting. Journal of Geophysical Research 116, C02005, https://doi.org/10.1029/2010JC006192.

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, and H.L. Miller, eds, Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, http://www.ipcc.ch/publications_and_data/publications_ ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm.

Kim, S., K.K. Hammerstom, K.E. Conlan, and A.R. Thurber. 2010. Polar ecosystem dynamics: Recovery of communities from organic enrichment in McMurdo Sound, Antarctica. Integrative and Comparative Biology 50(6):1,031–1,040, https://doi.org/10.1093/icb/icq058.

Kirchman, D.L., X.A.G. Moran, and H. Ducklow. 2009. Microbial growth in the polar oceans: Role of temperature and potential impact of climate change. Nature Reviews Microbiology 7:451–459, https://doi.org/10.1038/nrmicro2115.

MacAyeal, D.R. 1984a. Thermohaline circulation below the Ross Ice Shelf: A consequence of tidally induced vertical mixing and basal melting. Journal of Geophysical Research 89(C1):597–606, https://doi.org/10.1029/JC089iC01p00597.

MacAyeal, D.R. 1984b. Numerical simulations of the Ross Sea tides. Journal of Geophysical Research 89(C1):607–615, https://doi.org/10.1029/JC089iC01p00607.

Naish, T., R. Powell, R. Levy, G. Wilson, R. Scherer, F. Talarico, L. Krissek, F. Niessen, M. Pompilio, T. Wilson, and others. 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328, https://doi.org/10.1038/nature07867.

NRC. 2011. Future Science Opportunities in Antarctica and the Southern Ocean. Committee on Future Science Opportunities in Antarctica and the Southern Ocean, National Research Council, The National Academies Press, Washington, DC, 195 pp.

Orsi, A.H., and C.L. Wiederwohl. 2009. A recount of Ross Sea waters. Deep Sea Research Part II 56:778–795, https://doi.org/10.1016/j.dsr2.2008.10.033.

Padman, L., S.Y. Erofeeva, and I. Joughin. 2003. Tides of the Ross Sea and Ross Ice Shelf cavity. Antarctic Science 15(1):31–40.

Pollard, D., and R.M. DeConto. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332, https://doi.org/10.1038/nature07809.

Post, A.L., M.A. Hemer, P.E. O’Brien, D. Roberts, and M. Craven. 2007. History of benthic colonization beneath the Amery Ice Shelf, East Antarctica. Marine Ecology Progress Series 344:29–37, https://doi.org/10.3354/meps06966.

Pritchard, H.D., S.R.M. Ligtenberg, H.A. Fricker, D.G. Vaughan, M.R. van den Broeke, and L. Padman. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505, https://doi.org/10.1038/nature10968.

Rack, F., R. Levy, T. Falconer, R. Zook, P. Mahacek, D. Carroll, M. Williams, C. Stewart, R. Limeburner, and the ANDRILL Coulman High Project site survey team. 2011. Interdisciplinary outcomes of the ANDRILL Coulman High site surveys. P. 184 in 11th International Symposium on Antarctic Earth Sciences, Programme and Abstracts. Edinburgh, Scotland, July 10–15, 2011.

Rintoul, S.R., M. Sparrow, M.P. Meredith, V. Wadley, K. Speer, E. Hofmann, C. Summerhayes, E. Urban, and R. Bellerby. 2012. The Southern Ocean Observing System: Initial Science and Implementation Strategy. Scientific Committee on Antarctic Research/Scientific Committee on Oceanic Research, 74 pp.

Schofield, O., H.W. Ducklow, D.G. Martinson, M.P. Meredith, M.A. Moline, and W.R. Fraser. 2010. How do polar marine ecosystems respond to rapid climate change? Science 328:1,520–1,523, https://doi.org/10.1126/science.1185779.

Smith, W.O. Jr., D.G. Ainley, and R. Cattaneo-Vietti. 2007. Trophic interactions within the Ross Sea continental shelf ecosystem. Philosophical Transactions of the Royal Society B 362:95–111, https://doi.org/10.1098/rstb.2006.1956.

Thrush, S., P. Dayton, R. Cattaneo-Vietti, M. Chiantore, V. Cummings, N. Andrew, I. Hawes, S. Kim, R. Kvitek, and A.-M. Schwartz. 2006. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Research Part II 53:959–971, https://doi.org/10.1016/j.dsr2.2006.02.006.

Thrush, S.F., and V.J. Cummings, 2011. Massive icebergs, alteration in primary food resources and changes in benthic communities at Cape Evans, Antarctica. Marine Ecology 32:289–299, https://doi.org/10.1111/j.1439-0485.2011.00462.x.

Williams, R.T., and E.S. Robinson. 1980. The ocean tide in the southern Ross Sea. Journal of Geophysical Research 85(C11):6,689–6,696, https://doi.org/10.1029/JC085iC11p06689.

Wilson, D.S., S.S.R. Jamieson, P.J. Barrett, G. Leichenkov, K. Gohl, and R.D. Larter. 2012. Antarctic topography at the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 335–336:24–34, https://doi.org/10.1016/j.palaeo.2011.05.028.

Wilson, D.S., and B.P. Luyendyk. 2006. Bedrock platforms within the Ross Embayment, West Antarctica: Hypotheses for ice sheet history, wave erosion, Cenozoic extension, and thermal subsidence. Geochemistry Geophysics Geosystems 7(12), Q12011, https://doi.org/10.1029/2006GC001294.

Wilson, D.S., and B.P. Luyendyk. 2009. West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition. Geophysical Research Letters 36, L16302, https://doi.org/10.1029/2009GL039297.