Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 02

View Issue TOC
Volume 31, No. 2
Pages 80 - 87

Variability in Makassar Strait Heat Flux and Its Effect on the Eastern Tropical Indian Ocean

Laura K. Gruenburg Arnold L. Gordon
Article Abstract

The heat flux anomaly (HFa) within Makassar Strait, Indonesia, is investigated using observed velocity time series and El Niño-Southern Oscillation (ENSO)-scaled temperature profiles. Direct measurements of velocity from 40 m to 740 m depth were recorded during 2004–2011 and 2013–2017 during the International Nusantara STratification ANd Transport (INSTANT) and Monitoring Indonesian Throughflow (MITF) programs. The velocity profile is thermocline-intensified, with a velocity maximum near 100 m depth. In situ temperature measurements during 2004–2006 and ship-based CTD profiles collected during these two monitoring campaigns were combined with all available World Ocean Database CTD, ocean station, mechanical bathythermograph, and expendable bathythermograph data collected within Makassar Strait since 1950 to create representative temperature profiles for positive, negative, and neutral phases of ENSO. The Makassar velocity profile displays a stronger (weaker), shallower (deeper) velocity maximum, and a deeper (shallower) thermocline during La Niña (El Niño). Southward Makassar HFa increases rapidly from 2006 to 2008, with a peak of 0.13 PW in 2008 and 2009. Afterward, Makassar HFa slowly decreases to a minimum of −0.25 PW (less southward) during 2015, after which southward heat flux begins to climb again. Variability in depth-integrated volume transport from the surface to 740 m depth explains 57% of HFa variance. However, the total volume transport does not reflect the relative contributions of the warm upper and cool lower layers. Changes in the depth-dependent velocity profile explain 72% of HFa variance, whereas temperature profile variability explains only 28%. The impact of Makassar HFa variability on the Indian Ocean is assessed through comparison with the heat content anomaly (HCa) in an eastern tropical Indian Ocean box (ETIO; 101.5°E–105.5°E, and 9.5°S–15.5°S) using gridded Argo data. The ETIO HCa follows a similar pattern (R = 0.83) when lagged 30 months behind the Makassar HFa. Although well correlated, a notable discrepancy between the two time series is present in the ETIO in 2012/2013, possibly owing to a shift of the ITF from the dominant South Equatorial Current pathway to a southward Leeuwin track.

Citation

Gruenburg, L.K., and A.L. Gordon. 2018. Variability in Makassar Strait heat flux and its effect on the eastern tropical Indian Ocean. Oceanography 31(2):80–87, https://doi.org/10.5670/oceanog.2018.220.

References

Andersson, H.C., and A. Stigebrandt. 2005. Regulation of the Indonesian Throughflow by baroclinic draining of the North Australian Basin. Deep Sea Research Part I 52:2,214–2,233, https://doi.org/​10.1016/j.dsr.2005.06.014.

Asia Pacific Data Research Center. 2017. IPRC products based on Argo data, http://apdrc.soest.hawaii.edu/projects/argo/.

Banzon, V., T.M. Smith, T.M. Chin, C. Liu, and W. Hankins. 2016. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth System Science Data 8:165–176, https://doi.org/10.5194/essd-8-165-2016.

Boyer, T.P., J.I. Antonov, O.K. Baranova, C. Coleman, H.E. Garcia, A. Grodsky, D.R. Johnson, R.A. Locarnini, A.V. Mishonov, T.D. O’Brien, and others. 2013. World Ocean Database 2013, NOAA Atlas NESDIS 72. S. Levitus, ed., A. Mishonov, technical ed., Silver Spring, MD, https://doi.org/10.7289/V5NZ85MT.

Durgadoo, J.V., S. Rühs, A. Biastoch, and C.W.B. Böning. 2017. Indian Ocean sources of Agulhas leakage. Journal of Geophysical Research 122:3,481–3,499, https://doi.org/​10.1002/2016JC012676.

England, M.H., S. McGregor, P. Spence, G.A. Meehl, A. Timmermann, W. Cai, A. Sen Gupta, M.J. McPhaden, A. Purich, and A. Santoso. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4:222–227, https://doi.org/10.1038/NCLIMATE2106.

Fang, G., Y. Wang, Z. Wei, Y. Fang, F. Qiao, and X. Hu. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmospheres and Oceans 47:55–72, https://doi.org/10.1016/​j.dynatmoce.2008.09.003.

Feng, M., J. Benthuysen, N. Zhang, and D. Slawinski. 2015. Freshening anomalies in the Indonesian throughflow and impacts on the Leeuwin Current during 2010–2011. Geophysical Research Letters 42:8,555–8,562, https://doi.org/​10.1002/​2015GL065848.

Ffield, A., and A.L. Gordon. 1992. Vertical mixing in the Indonesian thermocline. Journal of Physical Oceanography 22:184–195, https://doi.org/10.1175/1520-0485(1992)022​<0184:VMITIT>2.0.CO;2.

Ffield, A., K. Vranes, A.L. Gordon, R.D. Susanto, and S.L. Garzoli. 2000. Temperature variability within Makassar Strait. Geophysical Research Letters 27:237–240, https://doi.org/​10.1029/​1999GL002377.

Gordon, A.L., S. Ma, D.B. Olson, P. Hacker, A. Ffield, L.D.Talley, D. Wilson, and M. Baringer. 1997. Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current. Geophysical Research Letters 24:2,573–2,576, https://doi.org/​10.1029/​97GL01061.

Gordon, A.L., R.D. Susanto, A. Ffield, B.A. Huber, W. Pranowo, and S. Wirasantosa. 2008. Makassar Strait throughflow, 2004 to 2006. Geophysical Research Letters 35, L24605, https://doi.org/​10.1029/​2008GL036372.

Gordon, A.L., J. Sprintall, H.M. Van Aken, D. Susanto, S. Wijffels, R. Molcard, A. Ffield, W. Pranowo, and A. Wirasantosa. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans 50:115–128, https://doi.org/10.1016/​j.dynatmoce.2009.12.002.

Gordon, A.L, B.A. Huber, J. Metzger, R.D. Susanto, H.E. Hulbert and T.R. Adi. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters 39(11), https://doi.org/​10.1029/​2012GL052021.

Gordon, A.L., P. Flament, C. Villanoy, and L. Centurioni. 2014. The nascent Kuroshio of Lamon Bay. Journal of Geophysical Research 119(7), https://doi.org/10.1002/2014JC009882.

Hu, S., and J. Sprintall. 2016. Interannual variability of the Indonesian Throughflow: The salinity effect. Journal of Geophysical Research 121:2,596–2,615, https://doi.org/10.1002/2015JC011495.

Hu, S., and J. Sprintall. 2017. Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification. Geophysical Research Letters 44:1,448–1,456, https://doi.org/​10.1002/2016GL072494.

Huatala, S.L., J.L. Reid, and N. Bray. 1996. The distribution and mixing of Pacific water masses in the Indonesian Seas. Journal of Geophysical Research Oceans 101:12,375–12,389, https://doi.org/​10.1029/​96JC00037.

Ilahude, A.G., and A.L. Gordon. 1996. Thermocline stratification within the Indonesian Seas. Journal of Geophysical Research 101:12,401–12,409, https://doi.org/10.1029/95JC03798.

Kosaka, Y., and S.P. Xie. 2013. Recent global-​warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407, https://doi.org/10.1038/nature12534.

Le Bars, D., H.A. Dijkstra, and W.P.M. De Ruijter. 2013. Impact of the Indonesian Throughflow on Agulhas Leakage. Ocean Science 9:773–785, https://doi.org/​10.5194/os-9-773-2013.

Lee, S., W. Park, M.O. Baringer, A.L. Gordon, B. Huber, and Y. Liu. 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, https://doi.org/​10.1038/ngeo2438.

Levitus, S., J.I. Antonov, T.P. Boyer, O.K. Baranova, H.E. Garcia, R.A. Locarnini, A.V. Mishonov, J.R. Reagan, D. Seidov, E.S. Yarosh, and M.M. Zweng. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters 39, L10603, https://doi.org/10.1029/2012GL051106.

Li, M., A.L. Gordon, J. Wei, L.K. Gruenburg, and G. Jiang. 2018. Multi-decadal timeseries of the Indonesian Throughflow. Dynamics of Atmospheres and Oceans 81:84–95, https://doi.org/​10.1016/j.dynatmoce.2018.02.001.

Liu, Q., M. Feng, D. Wang, and S. Wijffels. 2015. Interannual variability in the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. Journal of Geophysical Research, 120(12):8,270–8,282, https://doi.org/10.1002/2015JC011351.

Martinson, D.G. 2018. Quantitative Methods of Data Analysis for the Physical Sciences and Engineering. Cambridge University Press, Cambridge, 598 pp.

NOAA (National Oceanic and Atmospheric Administration). 2017. http://www.cpc.ncep.noaa.gov/data/indices/ersst4.nino.mth.81-10.ascii.

Qiu, B., and S. Chen. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. Journal of Physical Oceanography 40:2,525­–2,538, https://doi.org/​10.1175/2010JPO4462.1.

Schneider, N., and T.P. Barnett. 1997. Indonesian throughflow in a coupled general circulation model. Journal of Geophysical Research 102:12,341–12,358, https://doi.org/​10.1029/97JC00022.

Sen Gupta, A., S. McGregory, E. van Sebille, A. Ganachaud, J.N. Brown, and A. Santoso. 2016. Future changes to the Indonesian throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophysical Research Letters 43:1,669–1,678, https://doi.org/​10.1002/​2016GL067757.

Smith, W.H., and D.T. Sandwell. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1,956–1,962, https://doi.org/​10.1126/science.277.5334.1956.

Song, Q., and A.L. Gordon. 2004. Significance of the vertical profile of Indonesian Throughflow transport on the Indian Ocean. Geophysical Research Letters 31, L16307, https://doi.org/​10.1029/​2004GL020360.

Song, Q., A.L. Gordon, and M. Visbeck. 2004. Spreading of the Indonesian Throughflow in the Indian Ocean. Journal of Physical Oceanography 34:772–792, https://doi.org/​10.1175/​1520-0485​(2004)034​<0772:SOTITI>​2.0.CO;2.

Sprintall, J., S.E. Wijffels, R. Molcard, and I. Jaya. 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research 114(C7), https://doi.org/10.1029/2008JC005257.

Sprintall, J., A.L. Gordon, A. Koch-Larrouy, T. Lee, J.T. Potemra, K. Pujiana, and S.J. Wijffels. 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience 7:487–492, https://doi.org/10.1038/NGEO2188.

Susanto, R.D., A. Ffield, A.L. Gordon, and T.A. Adi. 2012. Variability of the Indonesian throughflow within Makassar Strait 2004–2009. Journal of Geophysical Research 117, C09013, https://doi.org/​10.1029/2012JC008096.

van Sebille, E., J. Sprintall, F.U. Schwarzkopf, A.S. Guota, A. Santoso, M.H. England, A. Biastoch, and C.W. Boning. 2014. Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. Journal of Geophysical Research 119:1,365–1,382, https://doi.org/​10.1002/​2013JC009525.

von Känel L., T. L. Frölicher, and N. Gruber. 2017. Hiatus-like decades in the absence of equatorial Pacific cooling and accelerated global ocean heat uptake. Geophysical Research Letters 44(15):7,909–7,918, https://doi.org/​10.1002/​2017GL073578.

Vranes, K., A.L. Gordon, and A. Ffield. 2002. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep Sea Research Part I 49:1,391–1,410, https://doi.org/​10.1016/​S0967-0645(01)00150-3.

Yuan, D., J. Wang, T. Xu, P. Xu, Z. Hui, X. Zhao, Y. Luan, W. Zheng, and Y. Yu. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian throughflow. Journal of Climate 24:3,593–3,608, https://doi.org/10.1175/2011JCLI3649.1.