Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 01

View Issue TOC
Volume 28, No. 1
Pages 106 - 113

OpenAccess

Variability and Interleaving of Upper-Ocean Water Masses Surrounding the North Atlantic Salinity Maximum

By Andrey Y. Shcherbina , Eric A. D’Asaro , Stephen C. Riser , and William S. Kessler 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The North Atlantic subtropical salinity maximum harbors the saltiest surface waters of the open world ocean. Subduction of these waters gives rise to Subtropical Underwater, spreading the high-salinity signature over the entire basin. The Salinity Processes in the Upper-ocean Regional Study (SPURS) is aimed at understanding the physics controlling the thermohaline structure in the salinity maximum region. A combination of moored and autonomous float observations is used here to describe the vertical water mass interleaving in the area. Seasonal intensification of interleaving in late spring and the abundance of small-scale thermohaline intrusions point to an important role for submesoscale processes in the initial subduction and subsequent evolution of Subtropical Underwater.

Citation

Shcherbina, A.Y., E.A. D’Asaro, S.C. Riser, and W.S. Kessler. 2015. Variability and interleaving of upper-ocean water masses surrounding the North Atlantic salinity maximum. Oceanography 28(1):106–113, https://doi.org/10.5670/oceanog.2015.12.

References

Badin, G., A. Tandon, and A. Mahadevan. 2011. Lateral mixing in the pycnocline by baroclinic mixed layer eddies. Journal of Physical Oceanography 41:2,080–2,101, https://doi.org/10.1175/JPO-D-11-05.1.

Boccaletti, G., R. Ferrari, and B. Fox-Kemper. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography 37(9):2,228–2,250, https://doi.org/10.1175/JPO3101.1.

Busecke, J., A.L. Gordon, Z. Li, F.M. Bingham, and J. Font. 2014. Subtropical surface layer salinity budget and the role of mesoscale turbulence. Journal of Geophysical Research: Oceans 119(7):4,124–4,140, https://doi.org/10.1002/2013JC009715.

Curry, R., B. Dickson, and I. Yashayaev. 2003. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426(6968):826–829, https://doi.org/10.1038/nature02206.

D’Asaro, E.A. 2003. Performance of autonomous Lagrangian floats. Journal of Atmospheric and Oceanic Technology 20(6):896–911, https://doi.org/10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

Farrar, J.T., L. Rainville, A.J. Plueddemann, W.S. Kessler, C. Lee, B.A. Hodges, R.W. Schmitt, J.B. Edson, S.C. Riser, C.C. Eriksen, and D.M. Fratantoni. 2015. Salinity and temperature balances at the SPURS central mooring during fall and winter. Oceanography 28(1):56–65, https://doi.org/10.5670/oceanog.2015.06.

Flament, P. 2002. A state variable for characterizing water masses and their diffusive stability: Spiciness. Progress in Oceanography 54(1–4):493–501, https://doi.org/10.1016/S0079-6611(02)00065-4.

Font, J., A. Camps, A. Borges, M. Martin-Neira, J. Boutin, N. Reul, Y.H. Kerr, A. Hahne, and S. Mecklenburg. 2010. SMOS: The challenging sea surface salinity measurement from space. Proceedings of the IEEE 98(5):649-665, https://doi.org/10.1109/JPROC.2009.2033096.

Gordon, A.L., C.F. Giulivi, J. Busecke, and F.M. Bingham. 2015. Differences among subtropical surface salinity patterns. Oceanography 28(1):32–39, https://doi.org/10.5670/oceanog.2015.02.

Helland-Hansen, B. 1916. Nogen hydrografiske metoder. Skandinaviske. Naturforskermote 16:357–359.

Lagerloef, G. 2012. Satellite mission monitors ocean surface salinity. Eos, Transactions American Geophysical Union 93:233–234, https://doi.org/10.1029/2012EO250001.

Lévy, M., P. Klein, and A.-M. Treguier. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research 59:535–565, https://doi.org/10.1357/002224001762842181.

Lindstrom, E., F. Bryan, and R. Schmitt. 2015. SPURS: Salinity Processes in the Upper-ocean Regional Study—The North Atlantic Experiment. Oceanography 28(1):14–19, https://doi.org/10.5670/oceanog.2015.01.

Mahadevan, A., E. D’Asaro, C. Lee, and M.J. Perry. 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:54–58, https://doi.org/10.1126/science.1218740.

Mahadevan, A., and A. Tandon. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling 14:241–256, https://doi.org/10.1016/j.ocemod.2006.05.006.

McCreary, J.P., and P. Lu. 1994. Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. Journal of Physical Oceanography 24:466–497.

Mensa, J., Z. Garraffo, A. Griffa, T. Özgökmen, A. Haza, and M. Veneziani. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dynamics 63:923–941, https://doi.org/10.1007/s10236-013-0633-1.

Nonaka, M., S.-P. Xie, and J.P. McCreary. 2002. Decadal variations in the subtropical cells and equatorial pacific SST. Geophysical Research Letters 29(7), https://doi.org/10.1029/2001GL013717.

O’Connor, B.M., R.A. Fine, and D.B. Olson. 2005. A global comparison of subtropical underwater formation rates. Deep Sea Research Part I 52:1,569–1,590, https://doi.org/10.1016/j.dsr.2005.01.011.

Qu, T., S. Gao, and I. Fukumori. 2013. Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. Journal of Geophysical Research 118:1,982–1,994, https://doi.org/10.1002/jgrc.20152.

Riser, S.C., J. Anderson, A. Shcherbina, and E. D’Asaro. 2015. Variability in near-surface salinity from hours to decades in the eastern North Atlantic: The SPURS region. Oceanography 28(1):66–77, https://doi.org/10.5670/oceanog.2015.11.

Schmidtko, S., G.C. Johnson, and J.M. Lyman. 2013. MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. Journal of Geophysical Research 118:1,658–1,672, https://doi.org/10.1002/jgrc.20122.

Schmitt, R.W. 1981. Form of the temperature-salinity relationship in the central water: Evidence for double-diffusive mixing. Journal of Physical Oceanography 11:1,015–1,026, https://doi.org/10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2.

Schmitt, R.W., and A.Blair. 2015. A river of salt. Oceanography 28(1):40–45, https://doi.org/10.5670/oceanog.2015.04.

Shcherbina, A.Y., E.A. D’Asaro, C.M. Lee, J.M. Klymak, M.J. Molemaker, and J.C. McWilliams. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters 40:4,706–4,711, https://doi.org/10.1002/grl.50919.

Shcherbina, A.Y., M.C. Gregg, M.H. Alford, and R.R. Harcourt. 2009. Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone. Journal of Physical Oceanography 39:2,735–2,756, https://doi.org/10.1175/2009JPO4190.1.

Stommel, H. 1979. Determination of water mass properties of water pumped down from the Ekman layer to the heostrophic flow below. Proceedings of the National Academy of Sciences of the United States of America 76:3,051–3,055, http://www.pnas.org/content/76/7/3051.full.pdf.

Talley, L.D. 2002. Salinity patterns in the ocean. Pp. 629–640 in Encyclopedia of Global Environmental Change, Volume, The Earth System: Physical and Chemical Dimensions of Global Environmental Change. M.C. MacCracken and J.S. Perry, eds, John Wiley & Sons, Chichester.

Thomas, L.N., A. Tandon, and A. Mahadevan. 2008. Submesoscale processes and dynamics. Pp. 17–38 in Ocean Modeling in an Eddying Regime. M.W. Hecht and H. Hasumi, eds, American Geophysical Union, Washington, DC.

Williams, R.G. 2001. Ocean subduction. Pp. 1,982–1,992 in Encyclopedia of Ocean Sciences. J.H. Steele, K.K. Turekian, and S.A. Thorpe, eds, Academic Press, Oxford.

Worthington, L.V. 1981. The water masses of the world ocean: Some results of a fine scale census. Pp. 42–69 in Evolution of Physical Oceanography. B.A. Warren and C. Wunsch, eds, MIT Press, Cambridge, MA.

Yoshikawa, Y., C.M. Lee, and L.N. Thomas. 2012. The subpolar front of the Japan/East Sea. Part III: Competing roles of frontal dynamics and atmospheric forcing in driving geostrophic vertical circulation and subduction. Journal of Physical Oceanography 42:991–1,011, https://doi.org/10.1175/JPO-D-11-0154.1.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.