Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 04

View Issue TOC
Volume 32, No. 4
Pages 156 - 163

OpenAccess

Tropical Western Pacific Thermal Structure and its Relationship to Ocean Surface Variables: A Numerical State Estimate and Forereef Temperature Records

By Travis A. Schramek , Bruce D. Cornuelle, Ganesh Gopalakrishnan, Patrick L. Colin, Sonia J. Rowley, Mark A. Merrifield, and Eric J. Terrill 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Complex interactions between open ocean and nearshore environments pose a predictability problem. Basin-scale ocean models are typically run at grid scales that do not accurately resolve individual islands, and model output is assessed mostly using observations of the open ocean. Thus, model ability to replicate island forereef oceanic variability has gone largely untested. Here, an eight-year regional state estimate covering 2009–2017 is compared to bottom temperature observations at the western Pacific islands of Palau and Pohnpei, and is found to reproduce the observed seasonal to interannual variability. Because of their steep bathymetry, these islands can act as moorings. Sea surface variables, such as temperature (SST) and height (SSH), have been shown to predict upper ocean thermal structure in the region, but the spatial structure of the relationship has gone unexplored. The state estimate was used to examine the multivariate predictability of temperature at depths to about 200 m both at the island boundaries and throughout the domain. The results show that the best multiple linear regression (MLR) skill was found near Palau, but useful skill (>0.6) was available through much of the region within the anticyclonic gyre driven by positive wind-stress curl. Point SSH measurements offered prediction skill for areas extending a few hundred kilometers zonally and perhaps 100 km meridionally. The insights into the additional information contained in surface variables in this region could aid in advancement of ocean modeling as well as predictions of ecological patterns and stressors.

Citation

Schramek, T.A., B.D. Cornuelle, G. Gopalakrishnan, P.L. Colin, S.J. Rowley, M.A. Merrifield, and E.J. Terrill. 2019. Tropical western Pacific thermal structure and its relationship to ocean surface variables: A numerical state estimate and forereef temperature records. Oceanography 32(4):156–163, https://doi.org/10.5670/oceanog.2019.421.

References
    Adcroft, A., C. Hill, and J. Marshall. 1997. Representation of topography by shaved cells in a height coordinate ocean model. Monthly Weather Review 125(9):2,293–2,315, https://doi.org/​10.1175/​1520-0493(1997)125​<2293:ROTBSC>2.0.CO;2.
  1. Carnes, M.R., J.M. Mitchell, and P.W. deWitt. 1990. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles. Journal of Geophysical Research 95(C10):17,979–17,992, https://doi.org/​10.1029/JC095iC10p17979.
  2. Chaen, M., and K. Wyrtki. 1981. The 20°C isotherm depth and sea level in the western equatorial pacific. Journal of the Oceanographical Society of Japan 37(4):198–200, https://doi.org/10.1007/BF02309057.
  3. Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, P.J. Hogan, A.J. Wallcraft, R. Baraille, and R. Bleck. 2007. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. Journal of Marine Systems 65(1):60–83, https://doi.org/​​10.1016/​j.jmarsys.2005.09.016.
  4. Chatterjee, S., and A.S. Hadi. 1986. Influential observations, high leverage points, and outliers in linear regression. Statistical Science 1(3):379–393.
  5. Chen, X., B. Qiu, Y. Du, S. Chen, and Y. Qi. 2016. Interannual and interdecadal variability of the North Equatorial Countercurrent in the western Pacific. Journal of Geophysical Research 121(10):7,743–7,758, https://doi.org/​10.1002/​2016JC012190.
  6. Cimino, M.A., M. Anderson, T. Schramek, S. Merrifield, and E.J. Terrill. 2019. Towards a fishing pressure prediction system for a western Pacific EEZ. Scientific Reports 9(1):461, https://doi.org/10.1038/s41598-018-36915-x.
  7. Colin, P.L. 2009. Marine Environments of Palau. Indo-Pacific Press, Taiwan, http://coralreefpalau.org/​wp-content/uploads/2017/04/Colin-PL-2009-Marine-Environments-of-Palau.pdf.
  8. Colin, P.L. 2018. Ocean warming and the reefs of Palau. Oceanography 31(2):126–135, https://doi.org/​10.5670/oceanog.2018.214.
  9. Fox, D.N., W.J. Teague, C.N. Barron, M.R. Carnes, and C.M. Lee. 2002. The Modular Ocean Data Assimilation System (MODAS). Journal of Atmospheric and Oceanic Technology 19(2):240–252, https://doi.org/​10.1175/1520-0426(2002)019​<0240:​TMODAS>​2.0.CO;2.
  10. Fox, M.D., G.J. Williams, M.D. Johnson, V.Z. Radice, B.J. Zgliczynski, E.L.A. Kelly, F.L. Rohwer, S.A. Sandin, and J.E. Smith. 2018. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Current Biology 28(21):3,355–3,363.E4, https://doi.org/​10.1016/j.cub.2018.08.057.
  11. Giering, R., and T. Kaminski. 1998. Recipes for adjoint code construction. ACM Transactions on Mathematical Software 24(4):437–474, https://doi.org/​10.1145/293686.293695.
  12. Gilbert, J.C., and C. Lemaréchal. 1989. Some numerical experiments with variable-​storage quasi-​Newton algorithms. Mathematical Programming 45(1):407–435, https://doi.org/​10.1007/BF01589113.
  13. Gove, J.M., M.A. McManus, A.B. Neuheimer, J.J. Polovina, J.C. Drazen, C.R. Smith, M.A. Merrifield, A.M. Friedlander, J.S. Ehses, C.W. Young, and others. 2015. Near-island biological hotspots in barren ocean basins. Nature Communications 7:10581, https://doi.org/​10.1038/ncomms10581.
  14. Heimbach, P., C. Hill, and R. Giering. 2002. Automatic generation of efficient adjoint code for a parallel Navier-Stokes solver. Pp. 1,019–1,028 in Computational Science — ICCS 2002. P.M.A. Sloot, A.G. Hoekstra, C.J.K. Tan, and J.J. Dongarra, eds, Springer, Berlin Heidelberg.
  15. Heron, S.F., E.J. Metzger, and W.J. Skirving. 2006. Seasonal variations of the ocean surface circulation in the vicinity of Palau. Journal of Oceanography 62(1992):413–426, https://doi.org/​10.1007/s10872-006-0065-3.
  16. Hsin, Y.C., and B. Qiu. 2012. Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific basin. Journal of Geophysical Research 117(6), https://doi.org/​10.1029/​2011JC007794.
  17. Lien, R.-C., B. Ma, C. Lee, T. Sanford, V. Mensah, L. Centurioni, B.D. Cornuelle, G. Gopalakrishnan, A.L. Gordon, M.-H. Chang, and others. 2015. The Kuroshio and Luzon Undercurrent east of Luzon Island. Oceanography 28(4):54–63, https://doi.org/​10.5670/oceanog.2015.81.
  18. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102(C3):5,753–5,766, https://doi.org/​10.1029/96JC02775.
  19. Pun, I., I. Lin, C. Wu, D. Ko, and W.T. Liu. 2007. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing 45(6):1,616–1,630, https://doi.org/10.1109/TGRS.2007.895950.
  20. Qiu, B., D. Rudnick, I. Cerovecki, B. Cornuelle, S. Chen, M. Schönau, J.L. McClean, and G. Gopalakrishnan. 2015. The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography 28(4):24–33, https://doi.org/​10.5670/​oceanog.2015.78.
  21. Rebert, J.P., J.R. Donguy, G. Eldin, and K. Wyrtki. 1985. Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. Journal of Geophysical Research 90(C6):11,719–11,725, https://doi.org/​10.1029/JC090iC06p11719.
  22. Roemmich, D. 1984. Indirect sensing of equatorial currents by means of island pressure measurements. Journal of Physical Oceanography 14(9):1,458–1,469, https://doi.org/​10.1175/​1520-​0485​(1984)014​<1458:ISOECB>​2.0.CO;2.
  23. Rowley, S.J., T.E. Roberts, R.R. Coleman, H.L. Spalding, E. Joseph, and M.K.L. Dorricott. 2019. Pohnpei, Federated States of Micronesia. Pp. 301–320 in Mesophotic Coral Ecosystems. Y. Loya, K.A. Puglise, and T.C.L. Bridge, eds, Coral Reefs of the World, vol. 12, Springer, Cham, https://doi.org/10.1007/978-3-319-92735-0_17.
  24. Schönau, M., D. Rudnick, I. Cerovecki, G. Gopalakrishnan, B. Cornuelle, J. McClean, and B. Qiu. 2015. The Mindanao Current: Mean structure and connectivity. Oceanography 28(4):34–45, https://doi.org/10.5670/oceanog.2015.79.
  25. Schönau, M.C., H.W. Wijesekera, W.J. Teague, P.L. Colin, G. Gopalakrishnan, D.L. Rudnick, B.D. Cornuelle, Z.R. Hallock, and D.W. Wang. 2019. The end of an El Niño: A view from Palau. Oceanography 32(4):32–45, https://doi.org/​10.5670/oceanog.2019.409.
  26. Schramek, T.A., P.L. Colin, M.A. Merrifield, and E.J. Terrill. 2018. Depth-dependent thermal stress around corals in the tropical Pacific Ocean. Geophysical Research Letters 45(18):9,739–9,747, https://doi.org/10.1029/2018GL078782.
  27. Smith, W.H., and D.T. Sandwell. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1,956–1,962, https://doi.org/​10.1126/science.277.5334.1956.
  28. Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C.N. Hill, and J. Marshall. 2002. Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. Journal of Geophysical Research 107(C9):1-1–1-27, https://doi.org/​10.1029/​2001JC000888.
  29. Strong, A.E., G. Liu, J. Meyer, J.C. Hendee, and D. Sasko. 2004. Coral reef watch 2002. Bulletin of Marine Science 75(2):259–268.
  30. Williams, G.J., S.A. Sandin, B.J. Zgliczynski, M.D. Fox, J.M. Gove, J.S. Rogers, K.A. Furby, A.C. Hartmann, Z.R. Caldwell, N.N. Price, and J.E. Smith. 2018. Biophysical drivers of coral trophic depth zonation. Marine Biology 165:60, https://doi.org/10.1007/s00227-018-3314-2.
  31. Wolanski, E., R.H. Richmond, G. Davis, E. Deleersnijder, and R.R. Leben. 2003. Eddies around Guam, an island in the Mariana Islands group. Continental Shelf Research 23(10):991–1,003, https://doi.org/​10.1016/S0278-4343(03)00087-6.
  32. Wolanski, E., P. Colin, J. Naithani, E. Deleersnijder, and Y. Golbuu. 2004. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuarine, Coastal and Shelf Science 60(4):705–716, https://doi.org/10.1016/​j.ecss.2004.03.009.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.