Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 03

View Issue TOC
Volume 27, No. 3
Pages 92 - 102

OpenAccess

The US Navy Coupled Ocean-Wave Prediction System

By Richard Allard , Erick Rogers, Paul Martin, Tommy Jensen, Philip Chu, Tim Campbell, James Dykes, Travis Smith, Jeikook Choi, and Uriah Gravois 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

A new coupled ocean-wave model has been developed and tested as a new component of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The modeling system is comprised of the Simulating WAves Nearshore (SWAN) wave model and the Navy Coastal Ocean Model (NCOM). The models are two-way coupled using the Earth System Modeling Framework (ESMF). The ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. The wave model ingests surface currents (wave-current interaction) and water levels. The system is designed to support the Navy’s ocean forecast requirements for regional and coastal domains. Validation studies for the Florida Straits and Virginia coastal area are presented. The system will run at the Naval Oceanographic Office and at the Fleet Numerical Meteorology and Oceanography Center.

Citation

Allard, R., E. Rogers, P. Martin, T. Jensen, P. Chu, T. Campbell, J. Dykes, T. Smith, J. Choi, and U. Gravois. 2014. The US Navy coupled ocean-wave prediction system. Oceanography 27(3):92–103, https://doi.org/10.5670/oceanog.2014.71.

References
    Allard, R.A., T.A. Smith, T.G. Jensen, P.Y. Chu, E. Rogers, T.J. Campbell, U.M. Gravois, S.N. Carroll, K. Watson, and S. Gaberšek. 2012. Validation Test Report for the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) Version 5.0: Ocean/Wave Component Validation. NRL Memorandum Report NRL/MR/7320—12-9423, http://www.dtic.mil/dtic/tr/fulltext/u2/a577284.pdf (accessed March 27, 2014).
  1. Ardhuin, F., B. Chapron, and F. Collard. 2009. Observation of swell dissipation across oceans. Geophysical Research Letters 36, L06607, https://doi.org/10.1029/2008GL037030.
  2. Ardhuin, F., E. Rogers, A. Babanin, J.-F. Filipot, R. Magne, A. Roland, A. van der Westhuysen, P. Queffeulou, J.-M. Lefevre, L. Aouf, and F. Collard. 2010. Semi-empirical dissipation source functions for ocean waves. Part I: Definitions, calibration and validations. Journal of Physical Oceanography 40:1,917–1,941, https://doi.org/10.1175/2010JPO4324.1.
  3. Asselin, R. 1972. Frequency filter for time integrations. Monthly Weather Review 100:487–490, https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.
  4. Babanin, A.V., K.N. Tsagareli, I.R. Young, and D.J. Walker. 2010. Numerical investigation of spectral evolution of wind waves. Part 2: Dissipation function and evolution tests. Journal of Physical Oceanography 40:667–683, https://doi.org/10.1175/2009JPO4370.1.
  5. Banner, M.L., A.V. Babanin, and I.R. Young. 2000. Breaking probability for dominant waves on the sea surface. Journal of Physical Oceanography 30:3,145–3,160, https://doi.org/10.1175/1520-0485(2000)030<3145:BPFDWO>2.0.CO;2.
  6. Barron, C.N., A.B. Kara, H.E. Hurlburt, C. Rowley, and L.F. Smedstad. 2004. Sea surface height predictions from the global Navy Coastal Ocean Model (NCOM) during 1998–2001. Journal of Atmospheric and Oceanic Technology 21:1,876–1,894, https://doi.org/10.1175/JTECH-1680.1.
  7. Bleck, R. 2002. An oceanic general coordinate circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling 4:55–88, https://doi.org/10.1016/S1463-5003(01)00012-9.
  8. Bennis, A.-C., F. Ardhuin, and F. Dumas. 2011. On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation, and adiabatic tests. Ocean Modelling 40:260–272, https://doi.org/10.1016/j.ocemod.2011.09.003.
  9. Blumberg, A.F., and G.L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model. Pp. 1–16 in Three-Dimensional Coastal Ocean Models. N. Heaps, ed., American Geophysical Union, New York, NY.
  10. Blumberg, A.F., and H. Herring. 1987. Circulation modelling using orthogonal curvilinear coordinates. Pp. 55–88 in Three-Dimensional Models of Marine and Estuarine Dynamics. J. Nihoul and B. Jamart, eds, Elsevier Oceanography Series, vol. 45.
  11. Booij, N., R.C. Ris, and L.H. Holthuijsen. 1999. A third-generation wave model for coastal regions: Part 1. Model description and validation. Journal of Geophysical Research 104(C4):7,649–7,666, https://doi.org/10.1029/98JC02622.
  12. Bub, F.L., A.C. Mask, K.R. Wood, D.G. Krynen, B.N. Lunde, C.J. DeHaan, E.J. Metzger, P.G. Posey, and J.A. Wallmark. 2014. The Navy’s application of ocean forecasting to decision support. Oceanography 27(3):126–137, https://doi.org/10.5670/oceanog.2014.74.
  13. Campbell, T., R. Allard, R. Preller, L. Smedstad, A. Wallcraft, S. Chen, H. Jin, S. Gaberšek, R. Hodur, J. Reich, and others. 2010. Integrated modeling of the battlespace environment. Computational Science and Engineering 12(5):36–45, https://doi.org/10.1109/MCSE.2010.78.
  14. Chen, S., T. Campbell, S. Gaberšek, R. Hodur, and P.J. Martin. 2010. Effect of two-way air–sea coupling in high and low wind speed regimes. Monthly Weather Review 138(9):3,579–3,602, https://doi.org/10.1175/2009MWR3119.1.
  15. Cummings, J.A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorology Society 131:3,583–3,604, https://doi.org/10.1256/qj.05.105.
  16. Davies, A.M., and J. Lawrence. 1994. Examining the influence of wind and wind-wave turbulence on tidal currents using a three-dimensional hydrodynamic model including wave-current interaction. Journal of Physical Oceanography 24:2,441–2,460, https://doi.org/10.1175/1520-0485(1994)024<2441:ETIOWA>2.0.CO;2.
  17. Dietrich, D.E., and D.S. Ko. 1994. A semi-collocated ocean model based on the SOMS approach. International Journal of Numerical Methods in Fluids 19:1,103–1,113.
  18. Doyle, J.D. 2002. Coupled atmosphere–ocean wave simulations under high wind conditions. Monthly Weather Review 130:3,087–3,099, https://doi.org/10.1175/1520-0493(2002)130<3087:CAOWSU>2.0.CO;2.
  19. Doyle, J.D., R.M. Hodur, S. Chen, Y. Jin, J.R. Moskaitis, S. Wang, E.A. Hendricks, H. Jin, and T.A. Smith. 2014. Tropical cyclone prediction using COAMPS-TC. Oceanography 27(3):104–115, https://doi.org/10.5670/oceanog.2014.72.
  20. Donelan, M.A., A.V. Babanin, I.R. Young, and M.L. Banner. 2006. Wave follower field measurements of the wind input spectral function. Part ІІ: Parameterization of the wind input. Journal of Physical Oceanography 36:1,672–1,688, https://doi.org/10.1175/JPO2933.1.
  21. Dukhovskoy, D.S., S.L. Morey, P.J. Martin, J.J. O’Brien, and C. Cooper. 2009. Application of a vanishing, quasi-sigma, vertical coordinate for simulation of high-speed deep currents over the Sigsbee Escarpment in the Gulf of Mexico. Ocean Modelling 28:250–265, https://doi.org/10.1016/j.ocemod.2009.02.009.
  22. Gravois, U., W.E. Rogers, and T.G. Jensen. 2012. A Coupled Model System for Southeast Florida: Wave Model Validation Using Radar and In Situ Observations. NRL Memorandum Report NRL/MR/7320—12-9355, 44 pp.
  23. Haney, R.L. 1991. On the pressure gradient force over steep topography in sigma coordinate ocean models. Journal of Physical Oceanography 21:610–619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.
  24. Haus, B.K. 2007. Surface current effects on the fetch limited growth of wave energy. Journal of Geophysical Research 112, C03003, https://doi.org/10.1029/2006JC003924.
  25. Haus, B.K., P.A. Work, G. Voulgaris, N.K. Shay, R. Ramos, and J. Martinez. 2010. Wind speed dependence of single-site wave-height retrievals from high-frequency radars. Journal of Atmospheric and Oceanic Technology 27:1,381–1,394, https://doi.org/10.1175/2010JTECHO730.1.
  26. Hodur, R.M. 1997. The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Monthly Weather Review 125:1,414–1,430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.
  27. Holland, W.R., J.C. Chow, and F.O. Bryan. 1998. Application of a third-order upwind scheme in the NCAR ocean model. Journal of Climate 11:1,487–1,493, https://doi.org/10.1175/1520-0442(1998)011<1487:AOATOU>2.0.CO;2.
  28. Hogan, T.F., and T.E. Rosmond. 1991. The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast models. Monthly Weather Review 119:1,786–1,815, https://doi.org/10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.
  29. Hwang, P.A. 2011. A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology 28:436–443, https://doi.org/10.1175/2010JTECHO812.1.
  30. Kantha, L.H., and C.A. Clayson. 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling 6:101–124, https://doi.org/10.1016/S1463-5003(02)00062-8.
  31. Lesser, G., J.A. Roelvink, J. van Kester, and G.S. Stelling. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering 51:883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014.
  32. Martin, P.J. 2000. A Description of the Navy Coastal Ocean Model Version 1.0. NRL Report NRL/FR/7322—00-9962, Naval Research Laboratory, SSC, MS 39529, 42 pp.
  33. Martin, P.J., E. Rogers, R.A. Allard, J.D. Dykes, and P.J. Hogan. 2013. Tests of Parameterized Langmuir-Circulation Mixing in the Ocean’s Surface Mixed Layer. NRL Memorandum Report NRL/MR/7320—13-9444, 47pp.
  34. Mellor, G.L., and T. Yamada. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of Atmospheric Science 31:1,791–1,806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
  35. Mellor, G.L., and P.A. Durbin. 1975. The structure and dynamics of the ocean surface mixed layer. Journal of Physical Oceanography 5:718–728, https://doi.org/10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2.
  36. Mellor, G.L., and T. Yamada. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics 20:851–875, https://doi.org/10.1029/RG020i004p00851.
  37. Metzger, E.J., O.M. Smedstad, P.G. Thoppil, H.E. Hurlburt, J.A. Cummings, A.J. Wallcraft, L. Zamudio, D.S. Franklin, P.G. Posey, M.W. Phelps, and others. 2014. US Navy operational global ocean and Arctic ice prediction systems. Oceanography 27(3):32–43, https://doi.org/10.5670/oceanog.2014.66.
  38. NOS (NOAA National Ocean Service). 2013. Tidal harmonics for Chesapeake Bay Bridge Tunnel, VA station ID: 8638863. http://co-ops.nos.noaa.gov/waterlevels.html?id=8638863.
  39. Phillips, O.M. 1958. The equilibrium range in the spectrum of wind generated waves. Journal of Fluid Mechanics 4:426–434, https://doi.org/10.1017/S0022112058000550.
  40. Qiao, F., Y. Yuan, T. Ezer, C. Xia, Y. Yang, X. Lu, and Z. Song. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics 60:1,339–1,355, https://doi.org/10.1007/s10236-010-0326-y.
  41. Rogers, W.E., A.V. Babanin, and D.W. Wang. 2012. Observation-consistent input and whitecapping-dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric Oceanic Technology 29(9):1,329–1,346, https://doi.org/10.1175/JTECH-D-11- 00092.1.
  42. Rowley, C., and A. Mask. 2014. Regional and coastal prediction with the Relocatable Ocean Nowcast/Forecast System. Oceanography 27(3):44–55, https://doi.org/10.5670/oceanog.2014.67.
  43. Signell, R.P., R.C. Beardsley, H.C. Graber, and A. Capotondi. 1990. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments. Journal of Geophysical Research 95(C6):9,671–9,678, https://doi.org/10.1029/JC095iC06p09671.
  44. Singhal, G., V.G. Panchang, and J.A. Nelson. 2013. Sensitivity assessment of wave heights to surface forcing in Cook Inlet, Alaska. Continental Shelf Research 63:S50–S62, https://doi.org/10.1016/j.csr.2012.02.007.
  45. Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review 91:99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  46. Smith, T.A., S. Chen, T. Campbell, P. Martin, W.E. Rogers, S. Gaberšek, D. Wang, S. Carroll, and R. Allard. 2013. Ocean-wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004). Ocean Modelling 69:181–194, https://doi.org/10.1016/j.ocemod.2013.06.003.
  47. Tang, C.L., W. Perrie, A.D. Jenkins, B.M. DeTracey, Y. Hu, B. Toulany, and P.C. Smith. 2007. Observation and modeling of surface currents on the Grand Banks: A study of the wave effects on surface currents. Journal of Geophysical Research 112, C10025, https://doi.org/10.1029/2006JC004028.
  48. Taylor, L.A., B.W. Eakins, K.S. Carignan, R.R. Warnken, T. Sazonova, D.C. Schoolcraft, and G.F. Sharman. 2008. Digital Elevation Model of Virginia Beach, Virginia: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-7, National Geophysical Data Center, Boulder, CO, 34 pp.
  49. Tolman, H.L. 2009. User Manual and System Documentation of WAVEWATCH IIITM Version 3.14. Technical Note, NOAA/NWS/NCEP/MMAB, 220 pp.
  50. SWAN Team. 2010. SWAN Scientific and Technical Documentation, SWAN Cycle III Version 40.81. Delft University of Technology, 118 pp. See: http://www.swan.tudelft.nl.
  51. Tsagareli, K.N. 2009. Numerical investigation of wind input and spectral dissipation in evolution of wind waves. PhD Thesis, University of Adelaide, Australia, 217 pp.
  52. Tsagareli, K.N., A.V. Babanin, D.J. Walker, and I.R. Young. 2010. Numerical investigation of spectral evolution of wind waves. Part 1: Wind input source function. Journal of Physical Oceanography 40:656–666, https://doi.org/10.1175/2009JPO4345.1.
  53. Veeramony, J., M.D. Orzech, K.L. Edwards, M. Gilligan, J. Choi, E. Terrill, and T. De Paolo. 2014. Navy nearshore ocean prediction systems. Oceanography 27(3):80–91, https://doi.org/10.5670/oceanog.2014.70.
  54. Voulgaris, G., B.K. Haus, P. Work, L.K. Shay, H. Seim, R.H. Weisberg, and J.R. Nelson. 2008. Waves initiative within SEACOOS. Marine Technology Society Journal 42(3):68–80.
  55. Warner, J.C., C.R. Sherwood, R.P. Signell, C.K. Harris, and H.G. Arango. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment transport model. Computers & Geosciences 34:1,284–1,306, https://doi.org/10.1016/j.cageo.2008.02.012.
  56. White, J. 2014. Challenges and opportunities: Naval oceanography in 2013. Sea Technology 55(1):16–18, http://www.sea-technology.com/features/2014/0114/4_White.php.
  57. Young, I.R., and A.V. Babanin. 2006. Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. Journal of Physical Oceanography 36:376–394, https://doi.org/10.1175/JPO2859.1.
  58. Zalesak, S.T. 1979. Fully multidimensional flux-corrected transport algorithms for fluid. Journal of Computational Physics 31:335–362, https://doi.org/10.1016/0021-9991(79)90051-2.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.