Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 03

View Issue TOC
Volume 25, No. 3
Pages 90 - 103

OpenAccess

The Ross Sea in a Sea of Change

By Walker O. Smith Jr. , Peter N. Sedwick, Kevin R. Arrigo , David G. Ainley , and Alejandro H. Orsi 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The Ross Sea, the most productive region in the Antarctic, reaches farther south than any body of water in the world. While its food web is relatively intact, its oceanography, biogeochemistry, and sea ice coverage have been changing dramatically, and likely will continue to do so in the future. Sea ice cover and persistence have been increasing, in contrast to the Amundsen-Bellingshausen sector, which has resulted in reduced open water duration for its biota. Models predict that as the ozone hole recovers, ice cover will begin to diminish. Currents on the continental shelf will likely change in the coming century, with a projected intensification of flow leading to altered deep ocean ventilation. Such changes in ice and circulation will lead to altered plankton distributions and composition, but it is difficult at present to predict the nature of these changes. Iron and irradiance play central roles in regulating phytoplankton production in the Ross Sea, but the impacts of oceanographic changes on the biogeochemistry of iron are unclear. Unlike other Southern Ocean regions, where continental shelves are very narrow and Antarctic krill dominates the herbivorous fauna, the broad shelf of the Ross Sea is dominated by crystal krill and silverfish, which are the major prey items for higher trophic levels. At present, the Ross Sea is considered to be one of the most species-rich areas of the Southern Ocean and a biodiversity “hotspot” due to its heterogeneous habitats. Despite being among the best-studied regions in the entire Southern Ocean, accurate predictions of the impacts of climate change on the oceanography and ecology of the Ross Sea remain fraught with uncertainty.

Citation

Smith, W.O. Jr., P.N. Sedwick, K.R. Arrigo, D.G. Ainley, and A.H. Orsi. 2012. The Ross Sea in a sea of change. Oceanography 25(3):90–103, https://doi.org/10.5670/oceanog.2012.80.

References

Ainley, D.G., G. Ballard, S. Ackley, L.K. Blight, J.T. Eastman, S.D. Emslie, A. Lescroël, S. Olmastroni, S.E. Townsend, C.T. Tynan, and others. 2007. Paradigm lost, or, is top-down forcing no longer significant in the Antarctic Marine Ecosystem? Antarctic Science 19:283–290, https://doi.org/10.1017/S095410200700051X.

Ainley, D.G., G. Ballard, L.K. Blight, S. Ackley, S.D. Emslie, A. Lescroël, S. Olmastroni, S.E. Townsend, C.T. Tynan, P. Wilson, and E. Woehler. 2010b. Impacts of cetaceans on the structure of southern ocean food webs. Marine Mammal Science 26:482–489, https://doi.org/10.1111/j.1748-7692.2009.00337.x.

Ainley, D.G., G. Ballard, and K.M. Dugger. 2006. Competition among penguins and cetaceans reveals trophic cascades in the Ross Sea, Antarctica. Ecology 87:2,080–2,093, https://doi.org/10.1890/0012-9658(2006)87[2080:CAPACR]2.0.CO;2.

Ainley, D.G., G. Ballard, and S. Olmastroni. 2009. An apparent decrease in the prevalence of “Ross Sea killer whales” in the southern Ross Sea. Aquatic Mammals 35:335–347, https://doi.org/10.1578/AM.35.3.2009.334.

Ainley, D.G., G. Ballard, and J. Weller. 2010a. Ross Sea Bioregionalization: Part I. Validation of the 2007 CCAMLR Bioregionalization Workshop Results Towards Including the Ross Sea in a Representative Network of Marine Protected Areas in the Southern Ocean. CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) WG-EMM-10/11, Hobart, Tasmania, http://www.penguinscience.com/CCAMLR4.pdf.

Ainley, D.G., and S.S. Jacobs. 1981. Sea-bird affinities for ocean and ice boundaries in the Antarctic. Deep Sea Research 28:1,173–1,185, https://doi.org/10.1016/0198-0149(81)90054-6.

Ainley, D.G., N. Nur, J.T. Eastman, G. Ballard, C.L. Parkinson, C.W. Evans, and A.L. DeVries. In press. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2010. Fish and Fisheries, https://doi.org/10.1111/j.1467-2979.2012.00474.x.

Ainley, D.G., J. Russell, S. Jenouvrier, E. Woehler, P.O. Lyver, W.R. Fraser, and G.L. Kooyman. 2010b. Antarctic penguin response to habitat change as Earth’s troposphere reaches 2°C above pre-industrial levels. Ecological Monographs 80:49–66, https://doi.org/10.1890/08-2289.1.

Arrigo, K.R., G.R. DiTullio, R.B. Dunbar, D.H. Robinson, M. van Woert, D.L. Worthen, and M.P. Lizotte. 2000. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research 105:8,827–8,846, https://doi.org/10.1029/1998JC000289.

Arrigo, K.R., D.H. Robinson, D.L. Worthen, R.B. Dunbar, G.R. DiTullio, M. van Woert, and M.P. Lizotte. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367, https://doi.org/10.1126/science.283.5400.365.

Arrigo, K.R., and G.L. van Dijken. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynyas. Journal of Geophysical Research 108, 3271, https://doi.org/10.1029/2002JC001739.

Arrigo, K.R., and G.L. van Dijken. 2004. Annual changes in sea ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Research Part II 51:117–138, https://doi.org/10.1016/j.dsr2.2003.04.003.

Arrigo, K.R., G.L. van Dijken, and S. Bushinsky. 2008a. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research 113, C08004, https://doi.org/10.1029/2007JC004551.

Arrigo, K.R., G.L. van Dijken, and M. Long. 2008b. Coastal Southern Ocean: A strong anthropogenic CO2 sink. Geophysical Research Letters 35, L21602, https://doi.org/10.1029/2008GL035624.

Asper, V., and W.O. Smith Jr. 1999. Particle fluxes during austral spring and summer in the southern Ross Sea (Antarctica). Journal of Geophysical Research 104(C3):5,345–5,360, https://doi.org/10.1029/1998JC900067.

Asper, V., and W.O. Smith Jr. 2003. Abundance, distribution and sinking rates of aggregates in the Ross Sea Polynya. Deep Sea Research Part I 50:131–150, https://doi.org/10.1016/S0967-0637(02)00146-2.

Ballard, G., D. Jongsomjit, S.D. Veloz, and D.G. Ainley. 2011. Coexistence of mesopredators in an intact polar ocean ecosystem: The basis for defining a Ross Sea marine protected area. Biological Conservation, https://doi.org/10.1016/j.biocon.2011.11.017.

Barber-Meyer, S.M., G.L. Kooyman, and P.J. Ponganis. 2008. Trends in western Ross Sea emperor penguin chick abundances and their relationships to climate. Antarctic Science 20:3–11, https://doi.org/10.1017/S0954102007000673.

Barry, J.P., J.M. Grebmeier, J. Smith, and R.B. Dunbar. 2003. Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the SW Ross Sea, Antarctica. Pp. 327–353 in Biogeochemistry of the Ross Sea. G.R. DiTullio and R.B. Dunbar, eds, Antarctic Research Series, vol. 78, American Geophysical Union, Washington, DC, https://doi.org/10.1029/078ARS21.

Boyd, P.W. 2002. Environmental factors controlling phytoplankton processes in the Southern Ocean. Journal of Phycology 38:844–861, https://doi.org/10.1046/j.1529-8817.2002.t01-1-01203.x.

Budillon, G., P. Castagno, S. Aliani, G. Spezie, and L. Padman. 2011. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep Sea Research Part I 58:1,002–1,021, https://doi.org/10.1016/j.dsr.2011.07.002.

Bullivant, J.S. 1967. Ecology of the Ross Sea benthos. Pp. 49–75 in The Fauna of the Ross Sea: Part 5. General Accounts, Station Lists, and Benthic Ecology. J.S. Bullivant and J.H. Dearborn, eds, New Zealand Oceanographic Institute, Bulletin 176, Wellington, NZ.

Caron, D.A., M.R. Dennett, D.J. Lonsdale, D.M. Moran, and L. Shalapyonok. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Research Part II 47:3,249–3,272, https://doi.org/10.1016/S0967-0645(00)00067-9.

Clarke, A., and N.M. Johnston. 2003. Antarctic marine benthic diversity. Pp. 47–114 in Oceanography and Marine Biology: An Annual Review, vol. 41. R.N. Gibson and R.J.A. Atkinson, eds, Taylor and Francis, London.

Coale, K.H., R.M. Gordon, and X. Wang. 2005. The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep Sea Research Part I 52:295–318, https://doi.org/10.1016/j.dsr.2004.09.008.

Coale, K.H., X. Wang, S.J. Tanner, and K.S. Johnson. 2003. Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep Sea Research Part II 50:635–653, https://doi.org/10.1016/S0967-0645(02)00588-X.

Comiso, J.C. 2010. Polar Oceans From Space. Springer, New York, 507 pp.

Comiso, J.C., R. Kwok, S. Martin, and A.L. Gordon. 2011. Variability and trends in sea ice extent and ice production in the Ross Sea. Journal of Geophysical Research 116, C04021, https://doi.org/10.1029/2010JC006391.

Dayton, P.K. 1989. Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1,484–1,486, https://doi.org/10.1126/science.245.4925.1484.

Deibel, D., and K.L. Daly. 2007. Zooplankton processes in Arctic and Antarctic polynyas. Pp. 271–332 in Polynyas: Windows to the World. W.O. Smith Jr. and D.G. Barber, eds, Elsevier Press, Amsterdam.

Dennett, M.R., S. Mathot, D.A. Caron, W.O. Smith Jr., and D. Lonsdale. 2001. Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea. Deep Sea Research Part II 48:4,019–4,038, https://doi.org/10.1016/S0967-0645(01)00079-0.

Dinniman, M.S., J.M. Klinck, and E.E. Hofmann. In press. Sensitivity of Circumpolar Deep Water transport and ice shelf basal melt along the west Antarctic Peninsula to changes in the winds. Journal of Climate, https://doi.org/10.1175/JCLI-D-11-00307.1.

DiTullio, G.R., and W.O. Smith Jr. 1995. Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep Sea Research Part I 42:873–892, https://doi.org/10.1016/0967-0637(95)00051-7.

Dunbar, R., K.R. Arrigo, M. Lutz, G.R. DiTullio, A.R. Leventer, M.P. Lizotte, M. van Woert, and D. Robinson. 2003. Non-Redfield production and export of marine organic matter: A recurrent part of the annual cycle in the Ross Sea, Antarctica. Pp. 179–196 in Biogeochemistry of the Ross Sea. G.R. DiTullio and R.B. Dunbar, eds, Antarctic Research Series, vol. 78, American Geophysical Union, Washington, DC, https://doi.org/10.1029/078ARS11.

Eastman, J.T. 2005. The nature of the diversity of Antarctic fishes. Polar Biology 28:93–107, https://doi.org/10.1007/s00300-004-0667-4.

Elliott, D.T., K.W. Tang, and A.R. Shields. 2009. Mesozooplankton beneath the summer sea ice in McMurdo Sound, Antarctica: Abundance, species composition, and DMSP content. Polar Biology 32:113–122, https://doi.org/10.1007/s00300-008-0511-3.

Garcia, N.S., P.W. Sedwick, and G.R. DiTullio. 2009. Influence of irradiance and iron on the growth of colonial Phaeocystis antarctica: Implications for seasonal bloom dynamics in the Ross Sea, Antarctica. Marine Ecology Progress Series 57:203–220, https://doi.org/10.3354/ame01334.

Gordon, A.L., E. Zambianchi, A. Orsi, M. Visbeck, C. Giulivi, T. Whitworth, and G. Spezie. 2004. Energetic plumes over the western Ross Sea continental slope. Geophysical Research Letters 31, L21302, https://doi.org/10.1029/2004GL020785.

Hall, A., and M. Visbeck. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. Journal of Climate 15:3,043–3,057, https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

Halpern, B.S., S. Walbridge, K.A. Selkoe, C.B. Kappel, F. Micheli, C. D’Agrosa, J.F. Bruno, K.S. Casey, C. Ebert, H.E. Fox, and others. 2008. A global map of human impact on marine ecosystems. Science 319:948–951, https://doi.org/10.1126/science.1149345.

Jacobs, S.S. 2006. Observations of change in the Southern Ocean. Philosophical Transactions of the Royal Society A 364:1,657–1,681, https://doi.org/10.1098/rsta.2006.1794.

Jacobs, S.S., R. Fairbanks and Y. Horibe. 1985. Origin and evolution of water masses near the Antarctic continental margin: Evidence from H218O/H216O ratios in seawater. Pp. 59–85 in Oceanology of the Antarctic Continental Shelf. S.S. Jacobs, ed., Antarctic Research Series vol. 43, American Geophysical Union, Washington, DC, https://doi.org/10.1029/AR043p0059.

Jacobs, S., and C.F. Giulivi. 1998. Interannual ocean and sea ice variability in the Ross Sea. Pp. 135–150 in Ocean, Ice and Atmosphere: Interactions at the Continental Margin. S.S. Jacobs and R.F. Weiss, eds, Antarctic Research Series, vol. 75, American Geophysical Union, Washington, DC, https://doi.org/10.1029/AR075p0135.

Jacobs, S.S., and C.F. Guilivi. 2010. Large multidecadal salinity trends near the Pacific- Antarctic continental margin. Journal of Climate 23:4,508–4,524, https://doi.org/10.1175/2010JCLI3284.1.

Jacobs, S.S., C.F. Giulivi, and P.A. Mele. 2002. Freshening of the Ross Sea during the late 20th century. Science 297:386–389, https://doi.org/10.1126/science.1069574.

Jacobs, S., H. Hellmer, and A. Jenkins. 1996. Antarctic ice sheet melting in the Southeast Pacific. Geophysical Research Letters 23:957–960, https://doi.org/10.1029/96GL00723.

Jacobs, S.S., A. Jenkins, C.F. Guilivi, and P. Dutrieux. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience 4:519–523, https://doi.org/10.1038/ngeo1188.

le Quéré, C., C. Rödenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfeld, A. Gomez, C. Labuschangne, M. Ramonet, T. Nakazawa, N. Metzl, and others. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1,735–1,738, https://doi.org/10.1126/science.1136188.

Lovenduski, N.S., and N. Gruber. 2005. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophysical Research Letters 32, L11603, https://doi.org/10.1029/2005GL022727.

Martin, S., R. Drucker, and R. Kwok. 2007. The areas and ice production of the western and central Ross Sea polynyas, 1991–2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002. Journal of Maine Systems 68:201–214, https://doi.org/10.1016/j.jmarsys.2006.11.008.

Martin, J.H., S.E. Fitzwater, and R.M. Gordon. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles 4:5–12, https://doi.org/10.1029/GB004i001p00005.

Montes-Hugo, M., S.C. Doney, H.W. Ducklow, W. Fraser, D. Martinson, S.E. Stammerjohn, and O. Schofield. 2008. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1,470–1,473, https://doi.org/10.1126/science.1164533.

Nelson, D.M., D.J. DeMaster, R.B. Dunbar, and W.O. Smith Jr. 1996. Cycling of organic carbon and biogenic silica in the Southern Ocean: Estimates of large-scale water column and sedimentary fluxes in the Ross Sea. Journal of Geophysical Research 101:18,519–18,531, https://doi.org/10.1029/96JC01573.

Orsi, A., G. Johnson, and J. Bullister. 1999. Circulation, mixing and production of Antarctic Bottom Water. Progress in Oceanography 43:55–109, https://doi.org/10.1016/S0079-6611(99)00004-X.

Orsi, A., W. Smethie, and J. Bullister. 2002. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. Journal of Geophysical Research 107, 3122, https://doi.org/10.1029/2001JC000976.

Orsi, A.H., and C.L. Wiederwohl. 2009. A recount of Ross Sea waters. Deep Sea Research Part II 56:778–795, https://doi.org/10.1016/j.dsr2.2008.10.033.

Orsi, A.H., and T. Whitworth III. 2005. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE): Volume 1. Southern Ocean. M. Sparrow, P. Chapman, and J. Gould, eds, International WOCE Project Office, Southampton, UK.

Orsi, A.H., T. Whitworth, and W.D. Nowlin. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I 42:641–673, https://doi.org/10.1016/0967-0637(95)00021-W.

Parkinson, C.L. 2002. Trends in the length of the Southern Ocean sea-ice season. Annals of Glaciology 34:435–440, https://doi.org/10.3189/172756402781817482.

Peloquin, J., and W.O. Smith Jr. 2007. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition. Journal of Geophysical Research 112, C08013, https://doi.org/10.1029/2006JC003816.

Rotella, J.J., W.A. Link, T. Chambert, G.E. Stauffer, and R.A. Garrott. 2012. Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark–recapture data. Journal of Animal Ecology 81:162–173, https://doi.org/10.1111/j.1365-2656.2011.01902.x.

Russell, J.L., K.W. Dixon, A. Gnanadesikan, R.J. Stouffer, and J.R. Toggweiler. 2006. The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. Journal of Climate 19:63,82–6,390, https://doi.org/10.1175/JCLI3984.1.

Sala, A., M. Azzali, and A. Russo. 2002. Krill of the Ross Sea: Distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic Expedition (January–February 2000). Scientia Marina 66:123–133.

Sedwick, P.N., and G.R. DiTullio. 1997. Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice. Geophysical Research Letters 24:2,515–2,518, https://doi.org/10.1029/97GL02596.

Sedwick, P.N., G.R. DiTullio, and D.J. Mackey. 2000. Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters. Journal of Geophysical Research 105:11,321–11,336, https://doi.org/10.1029/2000JC000256.

Sedwick, P.N., C.M. Marsay, A.M. Aguilar-Islas, M.C. Lohan, B.M. Sohst, M.C. Long, K.R. Arrigo, K.W. Bruland, G.R. DiTullio, R.B. Dunbar, and others. 2011. Early-season iron depletion in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf. Journal of Geophysical Research 116, C12019, https://doi.org/10.1029/2010JC006553.

Smith, W.O. Jr., D.G. Ainley, and R. Cattaneo-Vietti. 2007. Trophic interactions within the Ross Sea continental shelf ecosystem. Philosophical Transactions of the Royal Society B 362:95–111, https://doi.org/10.1098/rstb.2006.1956.

Smith, W.O. Jr., V. Asper, S. Tozzi, X. Liu, and S.E. Stammerjohn. 2011a. Surface layer variability in the Ross Sea, Antarctica, as assessed by in situ fluorescence measurements. Progress in Oceanography 88:28–45, https://doi.org/10.1016/j.pocean.2010.08.002.

Smith, W.O. Jr., and L.I. Gordon. 1997. Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophysical Research Letters 24:233–236, https://doi.org/10.1029/96GL03926.

Smith, W.O. Jr., J. Marra, M.R. Hiscock, and R.T. Barber. 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Research Part II 47:3,119–3,140, https://doi.org/10.1016/S0967-0645(00)00061-8.

Smith, W.O. Jr., A.R. Shields, J.C. Dreyer, J.A. Peloquin, and V. Asper. 2011b. Interannual variability in vertical export in the Ross Sea: Magnitude, composition, and environmental correlates. Deep Sea Research Part I 58:147–159, https://doi.org/10.1016/j.dsr.2010.11.007.

Smith, W.O. Jr., A.R. Shields, J.A. Peloquin, G. Catalano, S. Tozzi, M.S. Dinniman, and V. Asper. 2006. Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea. Deep Sea Research Part II 53:815–833, https://doi.org/10.1016/j.dsr2.2006.02.014.

Stammerjohn, S.E., D.G. Martinson, R.C. Smith, X. Yuan, and D. Rind. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research 113, C03S90, https://doi.org/10.1029/2007JC004269.

Sweeney, C., W.O. Smith Jr., B. Hales, R. Bidigare, C.A. Carlson, L.A. Codispoti, L.I. Gordon, D.A. Hansell, F.J. Millero, M.-O. Park, and T. Takahashi. 2000. Nutrient and carbon removal ratios and fluxes in the Ross Sea, Antarctica. Deep Sea Research Part II 47:3,395–3,422, https://doi.org/10.1016/S0967-0645(00)00073-4.

Tagliabue, A., and K.R. Arrigo. 2003. Anomalously low zooplankton abundance in the Ross Sea: An alternative explanation. Limnology and Oceanography 48:686–699, https://doi.org/10.4319/lo.2003.48.2.0686.

Testa, J.W., G. Oehlert, D.G. Ainley, J.L. Bengtson, D.B. Siniff, R.M. Laws, and D. Rounsevell. 1991. Temporal variability in Antarctic marine ecosystems: Periodic fluctuations in the phocid seals. Canadian Journal of Fisheries and Aquatic Science 48:631–639, https://doi.org/10.1139/f91-081.

Thompson, D.W.J., and S. Solomon. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296:895–899, https://doi.org/10.1126/science.1069270.

Turner, J., J.C. Comiso, G.J. Marshall, W.M. Connolley, T.A. Lachlan‐Cope, T. Bracegirdle, Z. Wang, M. Meredith, and T. Maksym. 2009. Non‐annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters 36, L08502, https://doi.org/10.1029/2009GL037524.

Whitworth, T., A. Orsi, S. Kim, W. Nowlin, and R. Locarnini. 1998. Water masses and mixing near the Antarctic Slope Front. Pp. 1–27 in Ocean, Ice and Atmosphere: Interactions at the Continental Margin. S.S. Jacobs and R.F. Weiss, eds, Antarctic Research Series, vol. 75, American Geophysical Union, Washington, DC, https://doi.org/10.1029/AR075p0001.

Wilson, P.R., D.G. Ainley, N. Nur, S.S. Jacobs, K.J. Barton, G. Ballard, and J.C. Comiso. 2001. Adélie penguin population change in the Pacific sector of Antarctica: Relation to sea ice extent and the Antarctic Circumpolar Current. Marine Ecology Progress Series 213:301–309, https://doi.org/10.3354/meps213301.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.