Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 136 - 145

OpenAccess

The Potential for CO2-Induced Acidification in Freshwater: A Great Lakes Case Study

By Jennifer C. Phillips , Galen A. McKinley, Val Bennington, Harvey A. Bootsma, Darren J. Pilcher , Robert W. Sterner , and Noel R. Urban 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

Ocean acidification will likely result in a drop of 0.3–0.4 pH units in the surface ocean by 2100, assuming anthropogenic CO2 emissions continue at the current rate. Impacts of increasing atmospheric pCO2 on pH in freshwater systems have scarcely been addressed. In this study, the Laurentian Great Lakes are used as a case study for the potential for CO2-induced acidification in freshwater systems as well as for assessment of the ability of current water quality monitoring to detect pH trends. If increasing atmospheric pCO2 is the only forcing, pH will decline in the Laurentian Great Lakes at the same rate and magnitude as the surface ocean through 2100. High-resolution numerical models and one high-resolution time series of data illustrate that the pH of the Great Lakes has significant spatio-temporal variability. Because of this variability, data from existing monitoring systems are insufficient to accurately resolve annual mean trends. Significant measurement uncertainty also impedes the ability to assess trends. To elucidate the effects of increasing atmospheric CO2 in the Great Lakes requires pH monitoring by collecting more accurate measurements with greater spatial and temporal coverage.

Citation

Phillips, J.C., G.A. McKinley, V. Bennington, H.A. Bootsma, D.J. Pilcher, R.W. Sterner, and N.R. Urban. 2015. The potential for CO2-induced acidification in freshwater: A Great Lakes case study. Oceanography 28(2):136–145, https://doi.org/10.5670/oceanog.2015.37.

Supplementary Materials

» Supplemental Figure S1 (106 KB)
MITgcm.Superior modeled pH. Monthly range of daily average pH (a) in April 2000 and (b) in August 2000; and daily average pH on the days (c) April 15, 2000 and (d) August 8, 2000. Lake-wide monthly mean in pH is 8.05 in April 2000 to 8.17 in August 2000. In (d) the EPA bi-annual monitoring sites are indicated.

References
    Alin, S.R., and T.C. Johnson. 2007. Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates. Global Biogeochemical Cycles 21, GB3002, https://doi.org/10.1029/2006GB002881.
  1. Allan, J.D., P.B. McIntyre, S.D.P Smith, B.S. Halpern, G.L. Boyer, A. Buchsbaum, G.A. Burton Jr., L.M. Campbell, W.L. Chadderton, J.J.H. Ciborowski, and others. 2013. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proceedings of the National Academy of Sciences of the United States of America 110:372–377, https://doi.org/10.1073/pnas.1213841110.
  2. Atilla, N., G.A. McKinley, V. Bennington, M. Baehr, N. Urban, M. DeGrandpre, A. Desai, and C. Wu. 2011. Observed variability of Lake Superior pCO2. Limnology and Oceanography 56:775–786, https://doi.org/10.4319/lo.2011.56.3.0775.
  3. Auer, M.T., L.M. Tomlinson, S.N. Higgins, S.Y. Malkin, E.T. Howell, and H.A. Bootsma. 2010. Great Lakes Cladophora in the 21st century: Same algae, different ecosystem. Journal of Great Lakes Research 36:248–255, https://doi.org/10.1016/j.jglr.2010.03.001.
  4. Baehr, M.M., and M.D. DeGrandpre. 2004. In situ pCO2 and O2 measurements in a lake during turnover and stratification: Observations and modeling. Limnology and Oceanography 49:330–340, https://doi.org/10.4319/lo.2004.49.2.0330.
  5. Bennington, V., G.A. McKinley, N. Kimura, and C.H. Wu. 2010. General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. Journal of Geophysical Research 115, C12015, https://doi.org/10.1029/2010JC006261.
  6. Bennington, V., G.A. McKinley, N. Urban, and C. McDonald. 2012. Can spatial heterogeneity explain the perceived imbalance in Lake Superior’s carbon budget? A model study. Journal of Geophysical Research 117, G03020, https://doi.org/10.1029/2011JG001895.
  7. Borges, A.V., and N. Gypens. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnology and Oceanography 55:346–353, https://doi.org/10.4319/lo.2010.55.1.0346.
  8. Breitburg, D.L., J. Salisbury, J.M. Bernhard, W.-J. Cai, S. Dupont, S.C. Doney, K.J. Kroeker, L.A. Levin, W.C. Long, L.M. Milke, and others. 2015. And on top of all that… Coping with ocean acidification in the midst of many stressors. Oceanography 28(2):48–61, https://doi.org/10.5670/oceanog.2015.31.
  9. Cai, W.J., X. Hu, W.J. Huang, M.C. Murrell, J.C. Lehrter, S.E. Lohrenz, W.C. Chou, W. Zhai, J.T. Hollibaugh, Y. Wang, and others. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4:766–770, https://doi.org/10.1038/ngeo1297.
  10. Chapra, S.C., A. Dove, and G.J. Warren. 2012. Long-term trends of Great Lakes major ions chemistry. Journal of Great Lakes Research 38:550-560, https://doi.org/10.1016/j.jglr.2012.06.010.
  11. Cole, J.J., N.F. Caraco, G.W. Kling, and T.K. Kratz. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1,568-1,570, https://doi.org/10.1126/science.265.5178.1568.
  12. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middleburg, and J. Melack. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185, https://doi.org/10.1007/s10021-006-9013-8.
  13. Cotner, J.B., B.A. Biddanda, W. Makino, and E. Stets. 2004. Organic carbon biogeochemistry of Lake Superior. Aquatic Ecosystem Health and Management 7:451–464, https://doi.org/10.1080/14634980490513292.
  14. Dickson, A.G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 K to 298.15 K. Deep-Sea Research Part I 37:755–766, https://doi.org/10.1016/0198-0149(90)90004-f.
  15. Dickson, A.G. 1993. The measurement of sea water pH. Marine Chemistry 44:131–142, https://doi.org/10.1016/0304-4203(93)90198-w.
  16. Dickson, A.G., C.L. Sabine, and J.R. Christian, eds. 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, 191 pp.
  17. Doney, S.C., N. Mahowald, I. Lima, R.A. Feely, F.T. Mackenzie, J.-F. Lamarque, and P.J. Rasch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America 104:14,580–14,585, https://doi.org/10.1073/pnas.0702218104.
  18. Eadie, B.J., and A. Robertson. 1976. An IFYGL carbon budget for Lake Ontario. Journal of Great Lakes Research 2:307–323, https://doi.org/10.1016/S0380-1330(76)72295-0.
  19. Einsele, G., J.P. Yan, and M. Hinderer. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global and Planetary Change 30:167–195, https://doi.org/10.1016/S0921-8181(01)00105-9.
  20. Environment Canada and US EPA. 2009. State of the Great Lakes 2009. EPA 905-R-09-031, Governments of Canada and the United States, 443 pp., http://binational.net/wp-content/uploads/2014/11/En161-3-1-2009E.pdf.
  21. Fabry, V.J., C. Langdon, W.M. Balch, A.G. Dickson, R.A. Feely, B. Hales, D.A. Hutchins, J.A. Kleypas, and C.L. Sabine. 2008. Present and Future Impacts of Ocean Acidification on Marine Ecosystems and Biogeochemical Cycles. Report of the Ocean Carbon and Biogeochemistry Scoping Workshop on Ocean Acidification Research, October 9–11, 2007, La Jolla, CA, 64 pp., http://www.us-ocb.org/publications/OCB_OA_rept.pdf.
  22. Fahnenstiel, G., S. Pothovena, H. Vanderploeg, D. Klarer, T. Nalepa, and D. Scavia. 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research 36:20–29, https://doi.org/10.1016/j.jglr.2010.03.009.
  23. Feely, R.A., S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine Coastal Shelf Science 88:442–449, https://doi.org/10.1016/j.ecss.2010.05.004.
  24. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/10.1126/science.1155676.
  25. Feely, R.A., T. Takahashi, R. Wanninkhof, M.J. McPhaden, C.E. Cosca, S.C. Sutherland, and M.E. Carr. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. Journal of Geophysical Research 111, C08S90, https://doi.org/10.1029/2005JC003129.
  26. Fitzpatrick, M.A.J., M. Munawar, J.H. Leach, and G.D. Haffner. 2007. Factors regulating primary production and phytoplankton dynamics in western Lake Erie. Fundamental and Applied Limnology 169:137–152, https://doi.org/10.1127/1863-9135/2007/0169-0137.
  27. French, C.R., J.J. Carr, E.M. Dougherty, L.A.K. Eidson, J.C. Reynolds, and M.D. DeGrandpre. 2002. Spectrophotometric pH measurement of freshwater. Analytica Chimica Acta 453:13–20, https://doi.org/10.1016/S0003-2670(01)01509-4.
  28. Hanson, P.C., A.L. Pollard, D.L. Bade, K. Predick, S.R. Carpenter, and J.A. Foley. 2004. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biology 10:1,285–1,298, https://doi.org/10.1111/j.1529-8817.2003.00805.x.
  29. Hauri, C., N. Gruber, M. Vogt, S.C. Doney, R.A. Feely, Z. Lachkar, A. Leinweber, A.M.P. McDonnell, M. Munnich, and G.-K. Plattner. 2013. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10:193–216, https://doi.org/10.5194/bg-10-193-2013.
  30. Hincks, S.S., and G.L. Mackie. 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 54:2,049–2,057, https://doi.org/10.1139/f97-114.
  31. Karl, D.M., D.V. Hebel, K. Björkman, and R.M. Letelier. 1998. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnology and Oceanography 43:1,270–1,286, http://aslo.org/lo/toc/vol_43/issue_6/1270.pdf.
  32. Kortelainen, P., M. Rantakari, J.T. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola, and P.J. Martikainen. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12:1,554–1,567, https://doi.org/10.1111/j.1365-2486.2006.01167.x.
  33. Mackie, G.L., and B. Kilgour. 1994. Efficacy and role of alum in removal of zebra mussel veliger larvae from raw water supplies. Water Research 29:731–744.
  34. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102:5,753–5,766, https://doi.org/10.1029/96JC02775.
  35. Martz, T.R., J.G. Connery, and K.S. Johnson. 2010. Testing the Honeywell Durafet for seawater pH applications. Limnology and Oceanography Methods 8:172–184, https://doi.org/10.4319/lom.2010.8.172.
  36. McConnaughey, T.A., J.W. LaBaugh, D.O. Rosenberry, and R.G. Striegl. 1994. Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnology and Oceanography 39:1,319–1,332, https://doi.org/10.4319/lo.1994.39.6.1319.
  37. McKinley, G.A, N. Urban, V. Bennington, D. Pilcher, and C. McDonald. 2011. Preliminary carbon budgets for the Laurentian Great Lakes. OCB News 4:1–7, http://www.us-ocb.org/publications/OCB_NEWS_SPR_SUM11.pdf.
  38. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, and others. 2007. Global climate projections. Chapter 10 in Climate Change 2007: The Physical Science Basis. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H.L. Miller, eds, Cambridge University Press, Cambridge, UK, http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf.
  39. Millero, F.J. 1979. The thermodynamics of the carbonate system in seawater at atmospheric pressure. Geochimica et Cosmochimica Acta 43:1,651–1,661.
  40. Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283:780–799, https://doi.org/10.2475/ajs.283.7.780.
  41. Nalepa, T.F., D.L. Fanslow, and S.A. Pothoven. 2010. Recent changes in density, biomass, recruitment, size structure, and nutritional state of Dreissena populations in southern Lake Michigan. Journal of Great Lakes Research 36:5–19, https://doi.org/10.1016/j.jglr.2010.03.013.
  42. Nalepa, T.F., S.A. Pothoven, and D.L. Fanslow. 2009. Recent changes in benthic macroinvertebrate populations in Lake Huron and impact on the diet of lake whitefish (Coregonus clupeaformis). Aquatic Ecosystem Health and Management 12:2–10, https://doi.org/10.1080/14634980802715175.
  43. NOAA Ocean Acidification Steering Committee. 2010. NOAA Ocean and Great Lakes Acidification Research Plan. NOAA Special Report, 143 pp., http://www.pmel.noaa.gov/co2/files/feel3500_without_budget_rfs.pdf.
  44. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.
  45. Pilcher, D., G.A. McKinley, H.A. Bootsma, and V. Bennington. 2015. Physical and biochemical mechanisms of internal carbon cycling in Lake Michigan. Journal of Geophysical Research 120(3):2,112–2,128, https://doi.org/10.1002/2014JC010594.
  46. Read, J., V. Klump, T. Johengen, D. Schwab, K. Paige, S. Eddy, E. Anderson, and C. Manninen. 2010. Working in freshwater: The Great Lakes observing system contributions to regional and national observations, data infrastructure and decision-support. Marine Technology Society Journal 44:84–98, https://doi.org/10.4031/MTSJ.44.6.12.
  47. Riebesell, U., V.J. Fabry, L. Hansson, and J.P. Gattuso, eds. 2010. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, 260 pp., http://www.iaea.org/ocean-acidification/download/7_Best practices/OA_guide_20110726.pdf.
  48. Sarmiento, J.L., and N. Gruber. 2006. Ocean Biogeochemical Dynamics. Princeton University Press, 526 pp.
  49. Sobek, S., L. Tranvik, and J. Cole. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles 19, GB2003, https://doi.org/10.1029/2004GB002264.
  50. Sterner, R.W. 2010. In situ measured primary production in Lake Superior. Journal of Great Lakes Research 36:139–149, https://doi.org/10.1016/j.jglr.2009.12.007.
  51. Stets, E.g., R.G. Striegl, G.R. Aiken, D.O. Rosenberry, and T.C. Winter. 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. Journal of Geophysical Research 114, G01008, https://doi.org/10.1029/2008JG000783.
  52. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, and others. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II 56:554–577, https://doi.org/10.1016/j.dsr2.2008.12.009.
  53. Teck, S., B.S. Halpern, C.V. Kappel, F. Micheli, K.A. Selkoe, C.M. Crain, R. Martone, C. Shearer, J. Arvai, B. Fischhoff, and others. 2010. Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecological Applications 20:1,402–1,416, https://doi.org/10.1890/09-1173.1.
  54. US EPA (US Environmental Protection Agency). 1988. The Great Lakes: An Environmental Atlas and Resource Book. Chicago, IL, and Toronto, Canada, http://www.epa.gov/glnpo/atlas.
  55. Urban, N., M.T. Auer, S.A. Greem, X. Lu, D.S. Apul, K.D. Powell, and L. Bub. 2005. Carbon cycling in Lake Superior. Journal of Geophysical Research 110, C06S90, https://doi.org/10.1029/2003JC002230.
  56. Vaccaro, L., and J. Read. 2011. Vital to Our Nation’s Economy: Great Lakes Jobs. Michigan Sea Grant College Program, 7 pp., http://www.miseagrant.umich.edu/downloads/economy/11-203-Great-Lakes-Jobs-report.pdf.
  57. Vinogradov, G.A., A.K. Klerman, and V.T. Komov. 1987. Peculiarities of ion exchange in the freshwater molluscs at high hydrogen ion concentrations and low salt content in the water. Ekologiya 3:81–84.
  58. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research Oceans 97:7,373–7,382, https://doi.org/10.1029/92JC00188.
  59. Wisconsin Initiative on Climate Change Impacts. 2011. Wisconsin’s Changing Climate: Impacts and Adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources, Madison, WI, 226 pp., http://www.wicci.wisc.edu/publications.php.
  60. Zickfeld, K., M.G. Morgan, D.J. Frame, and D.W. Keith. 2010. Expert judgments about transient climate response to alternative trajectories of radiative forcing. Proceedings of the National Academy of Sciences of the United States of America 107:12,451–12,456, https://doi.org/10.1073/pnas.0908906107.
  61. Zigah, P.K., E.C. Minor, J.P. Werne, and S.L. McCallister. 2011. Radiocarbon and stable carbon isotopic insights into provenance and cycling of carbon in Lake Superior. Limnology and Oceanography 56:867–886, https://doi.org/10.4319/lo.2011.56.3.0867.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.