Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 01

View Issue TOC
Volume 31, No. 1
Pages 16 - 35

OpenAccess

The Ocean Observatories Initiative

By Leslie M. Smith , John A. Barth, Deborah S. Kelley, Al Plueddemann, Ivan Rodero, Greg A. Ulses, Michael F. Vardaro, and Robert Weller 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The Ocean Observatories Initiative (OOI) is an integrated suite of instrumented platforms and discrete instruments that measure physical, chemical, geological, and biological properties from the seafloor to the sea surface. The OOI provides data to address large-scale scientific challenges such as coastal ocean dynamics, climate and ecosystem health, the global carbon cycle, and linkages among seafloor volcanism and life. The OOI Cyberinfrastructure currently serves over 250 terabytes of data from the arrays. These data are freely available to users worldwide, changing the way scientists and the broader community interact with the ocean, and permitting ocean research and inquiry at scales of centimeters to kilometers and seconds to decades.

Citation

Smith, L.M., J.A. Barth, D.S. Kelley, A. Plueddemann, I. Rodero, G.A. Ulses, M.F. Vardaro, and R. Weller. 2018. The Ocean Observatories Initiative. Oceanography 31(1):16–35, https://doi.org/10.5670/oceanog.2018.105.

References
    Arnulf, A.F., A.J. Harding, G.M. Kent, S.M. Carbotte, J.P. Canales, and M.R. Nedimovic. 2014. Anatomy of an active submarine volcano. Geology 42:655–658, https://doi.org/10.1130/G35629.1.
  1. Bangs, N.L.B., M.J. Hornbach, and C. Berndt. 2011. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth and Planetary Science Letters 310:105–112, https://doi.org/10.1016/​j.epsl.2011.06.022.
  2. Barth, J.A., J.P. Fram, E.P. Dever, C.M. Risien, C.E. Wingard, R.W. Collier, and T.D. Kearney. 2018. Warm blobs, low-oxygen events, and an eclipse: The Ocean Observatories Initiative Endurance Array captures them all. Oceanography 31(1):90–97, https://doi.org/​10.5670/oceanog.2018.114.
  3. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57:689–710, https://doi.org/10.4319/lo.2012.57.3.0698.
  4. Bigham, K. 2018. Axial Seamount Biology Catalog. Oceanography 31(1):127, https://doi.org/10.5670/oceanog.2018.119.
  5. Boetius, A., and E. Suess. 2004. Hydrate Ridge: A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology 205:291–310, https://doi.org/​10.1016/j.chemgeo.2003.12.034.
  6. Bond, N.A., M.F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters 42:3,414–3,420, https://doi.org/​10.1002/2015GL063306.
  7. Boyd, T.J., M.D. Levine, P.M. Kosro, and S.R. Gard. 2000. Mooring Observations from the Oregon Continental Shelf, April–September 1999: A Component of The Prediction of Wind-Driven Coastal Circulation Project. Data report 177, COAS Ref. 00-1, College of Oceanic and Atmospheric Sciences, Oregon State University, 202 pp.
  8. Chadwick, W.W., D.J. Geist, S. Jónsson, M. Poland, D.J. Johnson, and C.M. Meertens. 2006. A volcano bursting at the seams: Inflation, faulting, and eruption at Sierra Negra volcano, Galápagos. Geology 34:1,025–1,028, https://doi.org/10.1130/G22826A.1.
  9. Chadwick, W.W., Jr., J.B. Paduan, D.A. Clague, B.M. Dreyer, S.G. Merle, A.M. Bobbitt, D.W. Caress, B.T. Philip, D.S. Kelley, and S.L. Nooner. 2016. Voluminous eruption from a zoned magma body after an increase in magma supply rate at Axial Seamount. Geophysical Research Letters 43:12,063-12,070, https://doi.org/​10.1002/2016GL071327.
  10. Chan, F., J.A. Barth, C.A. Blanchette, R.H. Byrne, F. Chavez, O. Cheriton, R.A. Feely, G. Friederich, B. Gaylord, T. Gouhier, and others. 2017. Persistent spatial structuring of coastal ocean acidification in the California Current System. Scientific Reports 7:2526, https://doi.org/10.1038/s41598-017-02777-y.
  11. Chan, F., J.A. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W.T. Peterson, and B.A. Menge. 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319:920–920, https://doi.org/10.1126/science.1149016.
  12. Chen, K., G. Gawarkiewicz, and A. Plueddemann. 2018. Atmospheric and offshore forcing of temperature variability at the shelf break: Observations from the OOI Pioneer Array. Oceanography 31(1):72–79, https://doi.org/10.5670/oceanog.2018.112.
  13. Daly, K., R. Jahnke, M. Moline, R. Detrick, D. Luther, G. Matsumoto, L. Mayer, and K. Raybould. 2006. Report of the D&I Workshop, 27–30 March 2006. Joint Oceanographic Institutions, Consortium for Ocean Research and Education, and the National Science Foundation, Washington, DC, http://oceanleadership.org/​wp-content/​uploads/​2009/​07/​ooi_di_report_final.pdf.
  14. de Jong, M.F., M. Oltmanns, J. Karstensen, and L. de Steur. 2018. Deep convection in the Irminger Sea observed with a dense mooring array. Oceanography 31(1):50–59, https://doi.org/10.5670/oceanog.2018.109.
  15. Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, S. Dye, and J. Holfort. 2002. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837, https://doi.org/​10.1038/416832a.
  16. Flood, R.D., and A.N. Shor. 1988. Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns. Deep Sea Research Part A 35:943–971, https://doi.org/​10.1016/0198-0149(88)90070-2.
  17. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492, https://doi.org/​10.1126/science.1155676.
  18. Gawarkiewicz, G.G., R.E. Todd, A.J. Plueddemann, M. Andres, and J.P. Manning. 2012. Direct interaction between the Gulf Stream and the shelfbreak south of New England. Nature Scientific Reports 2:553, https://doi.org/10.1038/srep00553.
  19. Gawarkiewicz, G., R.E. Todd, W. Zhang, J. Partida, A. Gangopadhyay, M.-U.-H. Monim, P. Fratantoni, A. Malek Mercer, and M. Dent. 2018. The changing nature of shelf-break exchange revealed by the OOI Pioneer Array. Oceanography 31(1):60–70, https://doi.org/10.5670/oceanog.2018.110.
  20. Gislason, A.P., H. Petursdottir, and K. Gudmundsson. 2014. Long-term changes in abundance of Calanus finmarchicus south and north of Iceland in relation to environmental conditions and regional diversity in spring 1990–2013. ICES Journal of Marine Science 71:2,539–2,549, https://doi.org/10.1093/icesjms/fsu098.
  21. Grantham, B.A., F. Chan, K.J. Nielsen, D.S. Fox, J.A. Barth, A. Huyer, J. Lubchenco, and B.A. Menge. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–754, https://doi.org/10.1038/nature02605.
  22. Henderikx Freitas, F., G.S. Saldías, M. Goñi, R.K. Shearman, and A.E. White. 2018. Temporal and spatial dynamics of physical and biological properties along the Endurance Array of the California Current ecosystem. Oceanography 31(1):80–89, https://doi.org/10.5670/oceanog.2018.113.
  23. Huyer, A., R.L. Smith, and J. Fleischbein. 2002. The coastal ocean off Oregon and northern California during the 1997–8 El Niño. Progress in Oceanography 54:311–341, https://doi.org/10.1016/S0079-6611(02)00056-3.
  24. Huyer, A., P.A. Wheeler, P.T. Strub, R.L. Smith, R. Letelier, and P.M. Kosro. 2007. The Newport line off Oregon: Studies in the North East Pacific. Progress in Oceanography 75:126–160, https://doi.org/​10.1016/j.pocean.2007.08.003.
  25. Jullion, L., K. Heywood, A.C. Naveira Garabato, and D.P. Stevens. 2010. Circulation and water mass modification in the Brazil-Malvinas confluence. Journal of Physical Oceanography 40:845–864, https://doi.org/10.1175/2009JPO4174.1.
  26. Kelley, D.S. 2017. Volcanology: Vulcans rule beneath the sea. Nature Geoscience 10:251–253, https://doi.org/10.1038/ngeo2929.
  27. Kelley, D.S., J.R. Delaney, and S.K. Juniper. 2014. Establishing a new era of submarine volcanic observatories: Cabling Axial Seamount and the Endeavor Segment of the Juan de Fuca Ridge. Marine Geology 50th Anniversary Special Volume 352:426–450, https://doi.org/10.1016/​j.margeo.2014.03.010.
  28. Kelley, D.S., J.R. Delaney, and the Cabled Array Team. 2016. NSF’s Cabled Array: A wired tectonic plate and overlying ocean. Paper presented at OCEANS 2016 MTS/IEEE Monterey, September 19–23, 2016, https://doi.org/10.1109/OCEANS.2016.7761398.
  29. Kelley, D.S., and D. Grünbaum. 2018. Seastate: Experiential C-STEM learning through environmental sensor building. Oceanography 31(1):147, https://doi.org/10.5670/oceanog.2018.123.
  30. Knuth, F., and A. Marburg. 2016. Automated QA/QC and time series analyses on OOI high-​definition video data. Paper presented at OCEANS 2016 MTS/IEEE Monterey, September 19–23, 2016, https://doi.org/10.1109/OCEANS.2016.7761396.
  31. Lee, C.M., T. Paluskiewicz, D.L. Rudnick, M.M. Omand, and R.E. Todd. 2017. Autonomous instruments significantly expand ocean observing: An introduction to the special issue on autonomous and Lagrangian platforms and sensors (ALPS). Oceanography 30(2):15–17, https://doi.org/10.5670/oceanog.2017.211.
  32. Li, F., P. Ginoux, and V. Ramaswamy. 2008. Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. Journal of Geophysical Research 113:10207, https://doi.org/​10.1029/2007JD009190.
  33. Lindstrom, E. 2018. On the relationship between the Global Ocean Observing System and the Ocean Observatories Initiative. Oceanography 31(1):38–41, https://doi.org/10.5670/oceanog.2018.107.
  34. Lozier, M.S., S. Bacon, A.S. Bower, S.A. Cunningham, M.F. de Jong, L. de Steur, B. deYoung, J. Fischer, S.F. Gary, B.J.W. Greenan, and others. 2017. Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bulletin of the American Meteorological Society 98:737–752, https://doi.org/10.1175/BAMS-D-16-0057.1.
  35. Mathis, J.T., S.R. Cooley, N. Lucey, S. Colt, J. Ekstrom, T. Hurst, C. Hauri, W. Evans, J.N. Cross, and R.A. Feely. 2015. Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography 136:71–91, https://doi.org/10.1016/​j.pocean.2014.07.001.
  36. Mazzini, P.L.F., J.A. Barth, R.K. Shearman, and A. Erofeev. 2014. Buoyancy-driven coastal currents off the Oregon coast during fall and winter. Journal of Physical Oceanography 44:2,854–2,876, https://doi.org/10.1175/JPO-D-14-0012.1.
  37. McCabe, R.M., B. Hickey, R. Kudela, K. Lefebvre, N.G. Adams, B.D. Bill, F.M.D. Gulland, R.E. Thomson, W.P. Cochlan, and V.L. Trainer. 2016. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters 43(19):10,366–10,376, https://doi.org/​10.1002/​2016GL070023.
  38. McDonnell, J., A. deCharon, C.S. Lichtenwalner, K. Hunter-Thomson, C. Halversen, O. Schofield, S. Glenn, C. Ferraro, C. Lauter, and J. Hewlett. 2018. Education and public engagement in OOI: Lessons learned from the field. Oceanography 31(1):138–146, https://doi.org/​10.5670/oceanog.2018.122.
  39. McKibben, S.M., W. Peterson, A.M. Wood, V.L. Trainer, M. Hunter, and A.E. White. 2017. Climatic regulation of the neurotoxin domoic acid. Proceedings of the National Academy of Sciences 114(2):239–244, https://doi.org/10.1073/pnas.1606798114.
  40. McRae, E. 2016. Continuous real time scanning of the upper ocean water column. Paper presented at OCEANS 2016 MTS/IEEE Monterey, September 19–23, 2016, https://doi.org/10.1109/OCEANS.2016.7761359.
  41. Morrissey, J., and C. Bowler. 2012. Iron utilization in marine cyanobacteria and eukaryotic algae. Frontiers in Microbiology 3:PMC3296057, https://doi.org/10.3389/fmicb.2012.00043.
  42. National Academies of Sciences, Engineering, and Medicine. 2015. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The National Academies Press, Washington, DC, 154 pp., https://doi.org/​10.17226/21741.
  43. NSF (National Science Foundation). 2001. Ocean Sciences at the New Millennium. National Science Foundation, Arlington, VA, 151 pp., https://geo-prose.​com/​pdfs/os_millennium_report.pdf.
  44. Nooner, S.L., and W.W. Chadwick Jr. 2016. Inflation-predictable behavior and co-eruption deformation at Axial Seamount. Science 354:1,399-1,403, https://doi.org/10.1126/science.aah4666.
  45. Palevsky, H.I., and D.P. Nicholson. 2018. The North Atlantic biological pump: Insights from the Ocean Observatories Initiative Irminger Sea Array. Oceanography 31(1):42–49, https://doi.org/10.5670/oceanog.2018.108.
  46. Paul, W. 2004. Hose elements for buoy moorings: Design, fabrication and mechanical properties. Woods Hole Oceanographic Institution Technical Report WHOI-2004-06, Woods Hole Oceanographic Institution, Woods Hole, MA, 21 pp.
  47. Peterson, W.T., and F.B. Schwing. 2003. A new climate regime in Northeast Pacific ecosystems. Geophysical Research Letters 30, 1896, https://doi.org/​10.1029/2003GL017528.
  48. Philip, B.T., A.R. Denny, E.A. Solomon, and D.S. Kelley. 2016. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon. Geochemistry, Geophysics, Geosystems 17:1,182–1,196, https://doi.org/10.1002/​2016GC006250.
  49. Reimers, C.E., and M. Wolf. 2018. Power from benthic microbial fuel cells drives autonomous sensors and acoustic modems. Oceanography 31(1):98–103, https://doi.org/10.5670/oceanog.2018.115.
  50. Richardson, M.J., G.L. Weatherly, and W.D. Gardner. 1993. Benthic storms in the Argentine Basin. Deep Sea Research Part II 40:975–987, https://doi.org/​10.1016/0967-0645(93)90044-N.
  51. Rudnick, D.L., K.D. Zaba, R.E. Todd, and R.E. Davis. 2017. A climatology of the California Current System from a network of underwater gliders. Progress in Oceanography 154:64–106, https://doi.org/​10.1016/j.pocean.2017.03.002.
  52. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371, https://doi.org/10.1126/science.1097403.
  53. Schofield, O., and M.K. Tivey. 2004. Building a window to the sea: Ocean Research Interactive Observatory Networks (ORION). Oceanography 17(2):113–120, https://doi.org/​10.5670/oceanog.2004.59.
  54. Sloyan, B., L.D. Talley, T. Chereskin, R. Fine, and J. Holte. 2010. Antarctic Intermediate Water and Subantarctic Mode Water formation in the Southeast Pacific: The role of turbulent mixing. Journal of Physical Oceanography 40:1,558–1,574, https://doi.org/10.1175/2010JPO4114.1.
  55. Spietz, R.L., D.A. Butterfield, N.J. Buck, B.I. Larson, W.W. Chadwick Jr., S.L. Walker, D.S. Kelley, and R.M. Morris. 2018. Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and the oceanic hydrosphere. Oceanography 31(1):128–135, https://doi.org/10.5670/oceanog.2018.120.
  56. Stammer, D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. Journal of Physical Oceanography 27:1,743–1,769, https://doi.org/10.1175/1520-0485(1997)027​<1743:GCOOVE>2.0.CO;2.
  57. Stocks, K., S. Diggs, C. Olson, A. Pham, R. Arko, A. Shepherd, and D. Kinkade. 2018. SeaView: Bringing together an ocean of data. Oceanography 31(1):71, https://doi.org/​10.5670/oceanog.2018.111.
  58. Suess, E. 2014. Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Science 103:1,889–1,916, https://doi.org/10.1007/s00531-014-1010-0.
  59. Sundby, S., K. Drinkwater, and O.S. Kjesbu. 2016. The North Atlantic spring-bloom system: Where the changing climate meets the winter dark. Frontiers in Marine Science 3:28, https://doi.org/10.3389/fmars.2016.00028.
  60. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, and others. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II 49:1,601–1,622, https://doi.org/10.1016/S0967-0645(02)00003-6.
  61. Tolstoy, M., W.S.D. Wilcock, Y.J. Tan, and F. Waldhauser. 2018. A tale of two eruptions: How data from Axial Seamount led to a discovery on the East Pacific Rise. Oceanography 31(1):124–125, https://doi.org/10.5670/oceanog.2018.118.
  62. Torres, M.E., K. Wallmann, A.M. Tréhu, G. Bohrmann, W.S. Borowski, and H. Tomaru. 2004. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters 226:225–241, https://doi.org/​10.1016/j.epsl.2004.07.029.
  63. Trainer, V.L., B.M. Hickey, E.J. Lessard, W.P. Cochlan, C.G. Trick, M.L. Wells, A. MacFadyen, and S.K. Moore. 2009. Variability of Pseudo-nitzschia and domoic acid in the Juan de Fuca eddy region and its adjacent shelves. Limnology and Oceanography 54:289–308, https://doi.org/​10.4319/lo.2009.54.1.0289.
  64. Tréhu, A.M., W.S.D. Wilcock, R. Hilmo, P. Bodin, J. Connolly, E.C. Roland, and J. Braunmiller. 2018. The role of the Ocean Observatories Initiative in monitoring the offshore earthquake activity of the Cascadia subduction zone. Oceanography 31(1):104–113, https://doi.org/​10.5670/oceanog.2018.116.
  65. Ulses, G.A., L.M. Smith, and T.J. Cowles. 2018. Get engaged with the Ocean Observatories Initiative. Oceanography 31(1):136–137, https://doi.org/​10.5670/oceanog.2018.121.
  66. Vardaro, M.F., and J. McDonnell. 2018. Accessing OOI data. Oceanography 31(1):36–37, https://doi.org/​10.5670/oceanog.2018.106.
  67. Wilcock, W.S.D., R.P. Dziak, M. Tolstoy, W.W. Chadwick Jr., S.L. Nooner, D.R. Bohnenstiehl, J. Caplan-Auerbach, F. Waldhauser, A.F. Arnulf, C. Baillard, and others. 2018. The recent volcanic history of Axial Seamount: Geophysical insights into past eruption dynamics with an eye toward enhanced observations of future eruptions. Oceanography 31(1):114–123, https://doi.org/​10.5670/oceanog.2018.117.
  68. Wilcock, W.S.D., M. Tolstoy, F. Waldhauser, C. Garcia, J.J. Tan, D.R. Bohnenstiehl, J. Caplan-Auerbach, R.P. Dziak, A.F. Arnulf, and M.E. Mann. 2016. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 354:1,395–1,399, https://doi.org/10.1126/​
    science.aah5563
    .
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.