Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 18 - 43

OpenAccess

The East Pacific Rise Between 9°N and 10°N: Twenty-Five Years of Integrated, Multidisciplinary Oceanic Spreading Center Studies

By Daniel J. Fornari , Karen L. Von Damm (deceased) , Julia G. Bryce, James P. Cowen, Vicki Ferrini , Allison Fundis, Marvin D. Lilley, George W. Luther III , Lauren S. Mullineaux, Michael R. Perfit, M. Florencia Meana-Prado, Kenneth H. Rubin, William E. Seyfried Jr., Timothy M. Shank, S. Adam Soule , Maya Tolstoy , and Scott M. White  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The East Pacific Rise from ~ 9–10°N is an archetype for a fast-spreading mid-ocean ridge. In particular, the segment near 9°50’N has been the focus of multidisciplinary research for over two decades, making it one of the best-studied areas of the global ridge system. It is also one of only two sites along the global ridge where two historical volcanic eruptions have been observed. This volcanically active segment has thus offered unparalleled opportunities to investigate a range of complex interactions among magmatic, volcanic, hydrothermal, and biological processes associated with crustal accretion over a full magmatic cycle. At this 9°50’N site, comprehensive physical oceanographic measurements and modeling have also shed light on linkages between hydrodynamic transport of larvae and other materials and biological dynamics influenced by magmatic processes. Integrated results of high-resolution mapping, and both in situ and laboratory-based geophysical, oceanographic, geochemical, and biological observations and sampling, reveal how magmatic events perturb the hydrothermal system and the biological communities it hosts.

Citation

Fornari, D.J., K.L. Von Damm, J.G. Bryce, J.P. Cowen, V. Ferrini, A. Fundis, M.D. Lilley, G.W. Luther III, L.S. Mullineaux, M.R. Perfit, M.F. Meana-Prado, K.H. Rubin, W.E. Seyfried Jr., T.M. Shank, S.A. Soule, M. Tolstoy, and S.M. White. 2012. The East Pacific Rise between 9°N and 10°N: Twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography 25(1):18–43, https://doi.org/10.5670/oceanog.2012.02.

References
    Adams, D.K., D.J. McGillicuddy Jr., L. Zamudio, A.M. Thurnherr, X. Liang, O. Rouxel, C.R. German, and L.S. Mullineaux. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 332:580–583, https://doi.org/10.1126/science.1201066.
  1. Adams, D.K., and L.S. Mullineaux. 2008. Supply of gastropod larvae to hydrothermal vents reflects transport from local larval sources. Limnology and Oceanography 53:1,945–1,955, https://doi.org/10.4319/lo.2008.53.5.1945.
  2. Alain, K., N. Callac, M. Guegan, F. Lesongeur, P. Crassous, M.A. Cambon-Bonavita, J. Querellou, and D. Prieur. 2009. Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 59:1,310–1,315, https://doi.org/10.1099/ijs.0.005454-0.
  3. Alain, K., J. Querellou, F. Lesongeur, P. Pignet, P. Crassous, G. Raguenes, V. Cueff, and M.A. Cambon-Bonavita. 2002. Caminibacter hydrogeniphilus gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 52:1,317–1,323, https://doi.org/10.1099/ijs.0.02195-0.
  4. Baker, E.T., W.W. Chadwick Jr., J.P. Cowen, R.P. Dziak, K.H. Rubin, and D.J. Fornari. 2012. Hydrothermal discharge during submarine eruptions: The importance of detection, response, and new technology. Oceanography 25(1):128–141, https://doi.org/10.5670/oceanog.2012.11.
  5. Baker, E.T., R.A. Feely, M.J. Mottl, F.T. Sansone, C.G. Wheat, J.A. Resing, and J.E. Lupton. 1994. Hydrothermal plumes along the East Pacific Rise, 8°40’ to 11°50’N: Plume distribution and relationship to the apparent magmatic budget. Earth and Planetary Science Letters 128:1–17, https://doi.org/10.1016/0012-821X(94)90022-1.
  6. Barth, G.A., and J.C. Mutter. 1996. Variability in oceanic crustal thickness and structure: Multichannel seismic reflection results from the northern East Pacific Rise. Journal of Geophysical Research 101:17,951–17,975, https://doi.org/10.1029/96JB00814.
  7. Berndt, M.E., and W.E. Seyfried Jr. 1997. Calibration of Br/Cl fractionation during subcritical phase separation of seawater; Possible halite at 9° to 10°N East Pacific Rise. Geochimica et Cosmochimica Acta 61:2,849–2,854, https://doi.org/10.1016/S0016-7037(97)00134-8.
  8. Bohnenstiehl, D.R., F. Waldhauser, and M. Tolstoy. 2008. Frequency-magnitude distribution of microearthquakes beneath the 9°50’N region of the East Pacific Rise, October 2003 through April 2004. Geochemistry Geophysics Geosystems 9, Q10T03, https://doi.org/10.1029/2008GC002128.
  9. Bowles, J., J.S. Gee, D.V. Kent, M.R. Perfit, S.A. Soule, and D.J. Fornari. 2006. Paleointensity applications to timing and extent of eruptive activity, 9°–10°N East Pacific Rise. Geochemistry Geophysics Geosystems 7, Q06006, https://doi.org/10.1029/2005GC001141.
  10. Butterfield, D., I.R. Jonasson, G.J. Massoth, R.A. Feely, K.K. Roe, R.W. Embley, J.F. Holden, J.R. McDuff, M.D. Lilley, and J.R. Delaney. 1997. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philosophical Transactions of the Royal Society of London A 355:369–386.
  11. Carbotte, S., R. Arko, D. Chayes, W. Haxby, K. Lehnert, S. O’Hara, W. Ryan, T. Shipley, L. Gahagan, K. Johnson, and T.M. Shank. 2004. New integrated data management system for Ridge 2000 and MARGINS research. Eos, Transactions, American Geophysical Union 82:425–433, https://doi.org/10.1029/2004EO510002.
  12. Carbotte, S.M., J.P. Canales, M.R. Nedimović, H. Carton, and J.C. Mutter. 2012. Recent seismic studies at the East Pacific Rise 8°20’–10°10’N and Endeavour Segment: Insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography 25(1):100–112, https://doi.org/10.5670/oceanog.2012.08.
  13. Carbotte, S.M., and K.C. Macdonald. 1992. East Pacific Rise 8°–10°30’N: Evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. Journal of Geophysical Research 97:6,959–6,982, https://doi.org/10.1029/91JB03065.
    Childress, J.J. and C.R. Fisher. 1992. The biology of hydrothermal vent animals: Physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology 30:337–441.
  14. Cowen, J.P., D.J. Fornari, T.M. Shank, B. Love, B. Glazer, A.H. Treuch, R.C. Holmes, S.A. Soule, E.T. Baker, M. Tolstoy, and K.R. Pomraning. 2007. Volcanic eruptions at East Pacific Rise near 9°50’N. Eos, Transactions, American Geophysical Union 88:81–83, https://doi.org/10.1029/2007EO070001.
  15. Craddock, C., R.A. Lutz, and R.C. Vrijenhoek. 1997. Patterns of dispersal and larval development of archaeogastropod limpets at hydrothermal vents in the eastern Pacific. Journal of Experimental Marine Biology and Ecology 210:37–51, https://doi.org/10.1016/S0022-0981(96)02701-3.
  16. Crone, T.J., M. Tolstoy, and D. Stroup. 2011. The permeability structure of young ocean crust from poroelastically triggered earthquakes. Geophysical Research Letters 38, L05305, https://doi.org/10.1029/2011GL046820.
  17. Detrick, R.S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher. 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41, https://doi.org/10.1038/326035a0.
  18. Dietz, R.S. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature 190:854–857, https://doi.org/10.1038/190854a0.
  19. Ding, K., and W.E. Seyfried Jr. 2007. In-situ measurement of pH and dissolved H2 in mid-ocean hydrothermal fluids at elevated temperatures and pressures. Chemical Reviews 107:601–623, https://doi.org/10.1021/cr050367s.
  20. Dreyer, J.C., K.E. Knick, W.B. Flickinger, and C.L. Van Dover. 2005. Development of macrofaunal community structure in mussel beds on the northern East Pacific Rise. Marine Ecology Progress Series 302:121–134, https://doi.org/10.3354/meps302121.
  21. Dunn, R.A., and D.R. Toomey. 1997. Seismological evidence for three-dimensional melt migration beneath the East Pacific Rise. Nature 388:259–262, https://doi.org/10.1038/40831.
  22. Dunn, R.A., and D.R. Toomey. 2001. Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9°30’N). Earth and Planetary Science Letters 189:9–17, https://doi.org/10.1016/S0012-821X(01)00353-3.
  23. Dunn, R.A., D.R. Toomey, and S.C. Solomon. 2000. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30’N. Journal of Geophysical Research 105:23,537–23,555, https://doi.org/10.1029/2000JB900210.
  24. Dziak, R.P., D.R. Bohnenstiehl, H. Matsumoto, M.J. Fowler, J.H. Haxel, M. Tolstoy, and F. Waldhauser. 2009. January 2006 seafloor-spreading event at 9°50’N, East Pacific Rise: Ridge dike intrusion and transform fault interactions from regional hydroacoustic data. Geochemistry Geophysics Geosystems 10, Q06T06, https://doi.org/10.1029/2009GC002388.
  25. Escartín, J., S.A. Soule, D.J. Fornari, M.A. Tivey, H. Schouten, and M.R. Perfit, 2007. Interplay between faults and lava flows in construction of the upper oceanic crust: The East Pacific Rise crest 9°25’–9°58’N. Geochemistry Geophysics Geosystems 8, Q06005, https://doi.org/10.1029/2006GC001399.
  26. Ferrini, V.L., D.J. Fornari, T.M. Shank, J.C. Kinsey, M.A. Tivey, S.A. Soule, S.M. Carbotte, L.L. Whitcomb, D. Yoerger, and J. Howland. 2007. Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9°50’N. Geochemistry Geophysics Geosystems 8, Q01006, https://doi.org/10.1029/2006GC001333.
  27. Fontaine, F.J., and W.S.D. Wilcock. 2006. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems. Journal of Geophysical Research 111, B06102, https://doi.org/10.1029/2005JB003866.
  28. Fontaine, F.J., W.S.D. Wilcock, and D.A. Butterfield. 2007. Physical controls on the salinity of mid-ocean ridge hydrothermal vent fluids. Earth and Planetary Science Letters 257:132–145, https://doi.org/10.1016/j.epsl.2007.02.027.
  29. Fontaine, F.J., W.S.D. Wilcock, D.I. Foustoukos, and D.A. Butterfield. 2009. A Si-Cl geothermobarometer for the reaction zone of high-temperature, basaltic-hosted mid-ocean ridge hydrothermal systems. Geochemistry Geophysics Geosystems 10, Q05009, https://doi.org/10.1029/2009GC002407.
  30. Fornari, D.J., R.M. Haymon, M.R. Perfit, T.K.P. Gregg, and M.H. Edwards. 1998a. Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges: Formation of an axial summit trough along the East Pacific Rise, 9°–10°N. Journal of Geophysical Research 103:9,827–9,855, https://doi.org/10.1029/98JB00028.
  31. Fornari, D.J., T. Shank, K.L. Von Damm, T.K.P. Gregg, M. Lilley, G. Levai, A. Bray, R.M. Haymon, M.R. Perfit, and R. Lutz. 1998b. Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49’–51’N: Evidence for monitoring a crustal cracking event. Earth and Planetary Science Letters 160:419–431, https://doi.org/10.1016/S0012-821X(98)00101-0.
  32. Fornari, D.J., M.A. Tivey, H. Schouten, M. Perfit, D. Yoerger, A. Bradley, M. Edwards, R. Haymon, D. Scheirer, K. Von Damm, and others. 2004. Submarine lava flow emplacement at the East Pacific Rise 9°50’N: Implications for uppermost ocean crust stratigraphy and hydrothermal fluid circulation. Pp. 187–218 in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. C.R. German, J. Lin, and L.M. Parson, eds, Geophysical Monograph Series, vol. 148, American Geophysical Union, Washington, DC.
  33. Fornari, D.J., and the WHOI TowCam Group. 2003. A new deep-sea towed digital camera and multi- rock coring system. Eos, Transactions, American Geophysical Union 84(8):69, https://doi.org/10.1029/2003EO080001.
  34. Fournier, R.O. 1983. A method of calculating quartz solubilities in aqueous sodium chloride solutions. Geochimica et Cosmochimica Acta 47:579–586, https://doi.org/10.1016/0016-7037(83)90279-X.
  35. Foustoukos, D.I., and W.E. Seyfried Jr., 2007a. Fluid phase separation processes in submarine hydrothermal systems. Pp. 213–233 in Fluid-Fluid Interactions. A. Liebscher and C.A. Heinrich, eds, Mineralogical Society of America and The Geochemical Society, Chantilly, VA.
  36. Foustoukos, D.I., and W.E. Seyfried Jr. 2007b. Quartz solubility in the two-phase and critical region of the NaCl-KCl-H2O system: Implications for submarine hydrothermal vent systems at 9°50’N East Pacific Rise. Geochimica et Cosmochimica Acta 71:186-201, https://doi.org/10.1016/j.gca.2006.08.038.
  37. Fox, P.J., and D.G. Gallo. 1989. Transforms of the eastern central Pacific. Pp. 111–124 in The Eastern Pacific Ocean and Hawaii. E.L. Winterer, D.M. Hussong, and R.W. Decker, eds, Geology of North America, vol. N, Geological Society of America, Boulder, CO.
  38. Francheteau, J., and R.D. Ballard. 1983. The East Pacific Rise near 21°N, 13°N, and 20°S: Inferences for along-strike variability of axial processes of the mid-ocean ridge. Earth and Planetary Science Letters 64:93–116, https://doi.org/10.1016/0012-821X(83)90055-9.
  39. Francheteau, J., H.D. Needham, P. Choukroune, T. Juteau, M. Séguret, R.D. Ballard, P.J. Fox, W. Normark, A. Carranza, D. Cordoba, and others. 1979. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature 277:523–528, https://doi.org/10.1038/277523a0.
  40. Fundis, A.F., S.A. Soule, D.J. Fornari, and M.R. Perfit. 2010. Paving the seafloor: Volcanic emplacement processes during the 2005–06 eruption at the fast-spreading East Pacific Rise, 9°50’N. Geochemistry Geophysics Geosystems 11, Q08024, https://doi.org/10.1029/2010GC003058.
  41. Fustec, A., D. Desbruyères, and S.K. Juniper. 1987. Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise: Microdistribution and temporal variations. Biological Oceanography 4:121–164.
  42. Germanovich, L.N., R.P. Lowell, and P. Ramondenc. 2011. Magmatic origin of hydrothermal response to earthquake swarms: Constraints from heat flow and geochemical data at 9°50’N, East Pacific Rise. Journal of Geophysical Research 116, B05103, https://doi.org/10.1029/2009JB006588.
    Goss, A.R., M.R. Perfit, W.I. Ridley, K.H. Rubin, G.D. Kamenov, S.A. Soule, A. Fundis, and D.J. Fornari. 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46’N–9°56’N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry Geophysics Geosystems 11, Q05T09, https://doi.org/10.1029/2009GC002977.
  43. Govenar, B. 2012. Energy transfer through food webs at hydrothermal vents: Linking the lithosphere to the biosphere. Oceanography 25(1):246–255, https://doi.org/10.5670/oceanog.2012.23.
  44. Govenar, B., and C.R. Fisher. 2007. Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Marine Ecology 28:3–14, https://doi.org/10.1111/j.1439-0485.2007.00148.x.
  45. Govenar, B., M. Freeman, D.C. Bergquist, G.A. Johnson, and C.R. Fisher. 2004. Composition of a one-year old Riftia pachyptila community following a clearance experiment: Insight to succession patterns at deep-sea hydrothermal vents. The Biological Bulletin 207:177–182. Available online at: http://www.biolbull.org/content/207/3/177.full (accessed January 7, 2012).
  46. Govenar, B., N. Le Bris, S. Gollner, J. Glanville, A.B. Aperghis, S. Hourdez, and C.R. Fisher. 2005. Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats. Marine Ecology Progress Series 305:67–77, https://doi.org/10.3354/meps305067.
  47. Harding, A.J., G.M. Kent, and J.A. Orcutt. 1993. A multichannel seismic investigation of upper crustal structure at 9°N on the East Pacific Rise: Implications for crustal accretion. Journal of Geophysical Research 98:13,925–13,944, https://doi.org/10.1029/93JB00886.
  48. Haymon, R.M., D.J. Fornari, M.H. Edwards, S. Carbotte, D. Wright, and K.C. Macdonald. 1991. Hydrothermal vent distribution along the East Pacific Rise Crest (9°09’–54’N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridge. Earth and Planetary Science Letters 104:513–534, https://doi.org/10.1016/0012-821X(91)90226-8.
  49. Haymon, R.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, M.R. Perfit, J.M. Edmond, W.C. Shanks III, R.A. Lutz, J.M. Grebmeier, S. Carbotte, and others. 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52’N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters 119:85–101, https://doi.org/10.1016/0012-821X(93)90008-W.
  50. Heezen, B.C., M. Tharp, and M. Ewing. 1959. The floors of the oceans: Part I. The North Atlantic. Text to accompany the physiographic diagram of the North Atlantic. Geological Society of America Special Paper 65. Geological Society of America, Boulder, CO, 122 pp.
  51. Hekinian, R., M. Fevrier, F. Avedik, P. Cambon, J.L. Charlou, H.D. Needham, J. Raillard, J. Boulegue, L. Merlivat, A. Moinet, and others. 1983a. East Pacific Rise near 13°N: Geology of new hydrothermal fields. Science 219:1,321–1,324, https://doi.org/10.1126/science.219.4590.1321.
  52. Hekinian, R., J. Francheteau, V. Renard, R.D. Ballard, P. Choukroune, J.L. Cheminee, F. Albarede, J.F. Minster, J.C. Marty, J. Boulegue, and J.L. Charlou. 1983b. Intense hydrothermal activity at the axis of the East Pacific Rise near 13°N: Submersible witnesses the growth of sulfide chimney. Marine Geophysical Research 6:1–14, https://doi.org/10.1007/BF00300395.
  53. Hess, H.H. 1960. Nature of great oceanic ridges. Pp. 33–34 in Preprints of the 1st International Oceanographic Congress (New York, August 31–September 12, 1959). American Association for the Advancement of Science, Washington, DC.
  54. Hooft, E.E.E., H. Schouten, and R.S. Detrick. 1996. Constraining crustal emplacement processes from the variation in seismic layer 2A thickness at the East Pacific Rise. Earth and Planetary Science Letters 142:289–309, https://doi.org/10.1016/0012-821X(96)00101-X.
  55. Hurtado, L.A., R.A. Lutz, and R.C. Vrijenhoek. 2004. Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Molecular Ecology 13:2,603–2,615, https://doi.org/10.1111/j.1365-294X.2004.02287.x.
  56. Kelemen, P.B., N. Shimizu, and V.J.M. Salters. 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753, https://doi.org/10.1038/375747a0.
  57. Kelley, D.S., S.M. Carbotte, D.W. Caress, D.A. Clague, J.R. Delaney, J.B. Gill, H. Hadaway, J.F. Holden, E.E.E. Hooft, J.P. Kellogg, and others. 2012. Endeavour Segment of the Juan de Fuca Ridge: One of the most remarkable places on Earth. Oceanography 25(1):44–61, https://doi.org/10.5670/oceanog.2012.03.
  58. Kim, S.L., and L.S. Mullineaux. 1998. Distribution and near-bottom transport of larvae and other plankton at hydrothermal vents. Deep-Sea Research Part II 45:423–440, https://doi.org/10.1016/S0967-0645(97)00042-8.
  59. Kent, G.M., A.J. Harding, and J.A. Orcutt. 1993. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9°17’N deval from forward modeling of common depth point data. Journal of Geophysical Research 98:13,945–13,969, https://doi.org/10.1029/93JB00705.
  60. Kurras, G.J., D.J. Fornari, M.H. Edwards, M.R. Perfit, and M.C. Smith. 2000. Volcanic morphology of the East Pacific Rise Crest 9°49’–52’N: Implications for volcanic emplacement processes at fast-spreading mid-ocean ridges. Marine Geophysical Research 21(1–2):23–41, https://doi.org/10.1023/A:1004792202764.
  61. Langmuir, C.H., J.F. Bender, and R. Batiza. 1986. Petrological and tectonic segmentation of the East Pacific Rise, 5°30’–14°30’N. Nature 322:422–429, https://doi.org/10.1038/322422a0.
  62. Lavelle, J.W., A.M. Thurnherr, J.R. Ledwell, D.J. McGillicuddy, and L.S. Mullineaux. 2010. Deep ocean circulation and transport where the East Pacific Rise at 9–10°N meets the Lamont seamount chain. Journal of Geophysical Research 115, C12073, https://doi.org/10.1029/2010JC006426.
  63. Lavelle, J.W., A.M. Thurnherr, L.S. Mullineaux, D.J. McGillicuddy Jr., and J.R. Ledwell. 2012. The prediction, verification, and significance of flank jets at mid-ocean ridges. Oceanography 25(1):277–283, https://doi.org/10.5670/oceanog.2012.26.
  64. Le Bris, N., B. Govenar, C. Le Gall, and C.R. Fisher. 2006. Variability of physio-chemical conditions in 9°50’N EPR diffuse flow vent habitats. Marine Chemistry 98:167–182, https://doi.org/10.1016/j.marchem.2005.08.008.
  65. Lenihan, H.S., S.W. Mills, L.S. Mullineaux, C.H. Peterson, C.R. Fisher, and F. Micheli. 2008. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus. Deep Sea Research Part I 55:1,707–1,717, https://doi.org/10.1016/j.dsr.2008.07.007.
  66. le Roux, P.J., S.B. Shirey, E.H. Hauri, M.R. Perfit, and J.F. Bender. 2006. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters 251:209–231, https://doi.org/10.1016/j.epsl.2006.09.012.
  67. Lilley, M.D., J.E. Lupton, D.A. Butterfield, and E. Olson. 2003. Magmatic events produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881, https://doi.org/10.1038/nature01569.
  68. Liu, L., and R.P. Lowell. 2009. Models of hydrothermal heat output from a convecting, crystallizing, replenished magma chamber beneath an oceanic spreading center. Journal of Geophysical Research 114, B02102, https://doi.org/10.1029/2008JB005846.
  69. Lonsdale, P. 1977. Abyssal pahoehoe with lava coils at the Galapagos rift. Geology 5:147–152, https://doi.org/10.1130/0091-7613(1977)5<147:APWLCA>2.0.CO;2.
  70. Lonsdale, P. 1983. Overlapping rift zones at the 5.5°S offset of the East Pacific Rise. Journal of Geophysical Research 88(B11):9,393–9,406, https://doi.org/10.1029/JB088iB11p09393.
  71. Lonsdale, P. 1985. Nontransform offsets of the Pacific-Cocos plate boundary and their traces on the rise flank. Geological Society of America Bulletin 96(3):313–327, https://doi.org/10.1130/0016-7606(1985)96<313:NOOTPP>2.0.CO;2.
  72. Lowell, R.P., and L.N. Germanovich. 1997. Evolution of a brine-saturated layer at the base of a ridge-crest hydrothermal system. Journal of Geophysical Research 102:10,245–10,255, https://doi.org/10.1029/97JB00264.
  73. Lowell, R.P., and Y. Yao. 2002. Anhydrite precipitation and the extent of hydrothermal recharge zones at ocean ridge crests. Journal of Geophysical Research 107, 2183, https://doi.org/10.1029/2001JB001289.
  74. Lundstrom, C.C., D.E. Sampson, M.R. Perfit, J. Gill, and Q. Williams. 1999. Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. Journal of Geophysical Research 104(B6):13,035–13,048, https://doi.org/10.1029/1999JB900081.
  75. Luther, G.W. III, A. Gartman, M. Yücel, A.S. Madison, T.S. Moore, H.A. Nees, D.B. Nuzzio, A. Sen, R.A. Lutz, T.M. Shank, and C.R. Fisher. 2012. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: Comparison of two geologically distinct ridge systems. Oceanography 25(1):234–245, https://doi.org/10.5670/oceanog.2012.22.
  76. Luther, G.W. III, B.T. Glazer, S. Ma, R.E. Trouwborst, T.S. Moore, E. Metzger, C. Kraiya, T.J. Waite, G. Druschel, B. Sundby, and others. 2008. Use of voltammetric solid-state (micro) electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry 108:221–235, https://doi.org/10.1016/j.marchem.2007.03.002.
  77. Luther, G.W. III, T. Rozan, M. Taillefert, D. Nuzzio, C. DiMeo, T.M. Shank, R.A. Lutz, and S.C. Cary. 2001. Chemical speciation drives hydrothermal vent ecology. Nature 410:813–815, https://doi.org/10.1038/35071069.
  78. Lutz, R.A., T.M. Shank, and R. Evans. 2001. Life after death in the deep sea. American Scientist 89(5):422–431, https://doi.org/10.1511/2001.5.422.
  79. Lutz, R.A., T.M. Shank, D.J. Fornari, R.M. Haymon, M.D. Lilley, K.L. Von Damm, and D. Desbruyeres. 1994. Rapid growth at deep-sea vents. Nature 371:663–664, https://doi.org/10.1038/371663a0.
  80. Lutz, R.A., T.M. Shank, G.W. Luther III, C. Vetriani, M. Tolstoy, D.B. Nuzzio, T.S. Moore, F. Waldhauser, M. Crespo-Medina, A. Chatziefthimou, and others. 2008. Interrelationships between vent fluid chemistry, temperature, seismic activity and biological community structure at a mussel-dominated, deep-sea hydrothermal vent along the East Pacific Rise. Journal of Shellfish Research 27:177–190, https://doi.org/10.2983/0730-8000(2008)27[177:IBVFCT]2.0.CO;2.
  81. Macdonald, K.C., and P.J. Fox. 1983. Overlapping spreading centers: New accretion geometry on the East Pacific Rise. Nature 302:55–58, https://doi.org/10.1038/302055a0.
  82. Macdonald, K.C., and P.J. Fox. 1988. The axial summit graben and cross-sectional shape of the East Pacific Rise as indicators of axial magma chambers and recent volcanic eruptions. Earth and Planetary Science Letters 88:119–131, https://doi.org/10.1016/0012-821X(88)90051-9.
  83. Macdonald, K.C., P.J. Fox, S. Miller, S. Carbotte, M.H. Edwards, M. Eisen, D.J. Fornari, L. Perram, R. Pockalny, D. Scheirer, and others. 1992. The East Pacific Rise and its flanks 8–18°N: History of segmentation, propagation and spreading direction based on SeaMARC II and Sea Beam studies. Marine Geophysical Research 14:299–344, https://doi.org/10.1007/BF01203621.
  84. McCollom, T.M. 2000. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Research Part I 47:85–101, https://doi.org/10.1016/S0967-0637(99)00048-5.
  85. McGillicuddy, D.J. Jr., W. Lavelle, A.M. Thurnherr, V.K. Kosnyrev, and L.S. Mullineaux. 2010. Larval dispersion along an axially symmetric mid-ocean ridge. Deep Sea Research Part I 57:880–892, https://doi.org/10.1016/j.dsr.2010.04.003.
  86. Menard, H.W. 1960. The East Pacific Rise. Science 132:1,737–1,742, https://doi.org/10.1126/science.132.3441.1737.
  87. Menard, H.W. 1964. Marine Geology of the Pacific. International Series in the Earth Sciences, McGraw Hill, 271 pp.
  88. Micheli, F., C.H. Peterson, L.S. Mullineaux, C. Fisher, S.W. Mills, G. Sancho, G.A. Johnson, and H.S. Lenihan. 2002. Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72:365–382, https://doi.org/10.1890/0012-9615(2002)072[0365:PSCADS]2.0.CO;2.
  89. Moore, T.S., T.M. Shank, D.B. Nuzzio, and G.W. Luther III. 2009. Time-series chemical and temperature habitat characterization of diffuse flow hydrothermal sites at 9°50’N East Pacific Rise. Deep Sea Research Part II 56:1,616–1,621. https://doi.org/10.1016/j.dsr2.2009.05.008.
  90. Mullineaux L.S., D.K. Adams, S.W. Mills, and S.E. Beaulieu. 2010. Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption. Proceedings of the National Academy of Sciences of the United States of America 107:7,829–7,834, https://doi.org/10.1073/pnas.0913187107.
  91. Mullineaux, L.S., C.R. Fisher, C.H. Peterson, and S.W. Schaeffer. 2000. Vestimentiferan tubeworm succession at hydrothermal vents: Use of biogenic cues to reduce habitat selection error. Oecologia 123:275–284.
  92. Mullineaux, L.S., S.W. Mills, and E. Goldman. 1998. Recruitment variation during a pilot colonization study of hydrothermal vents (9°50’N, East Pacific Rise). Deep-Sea Research Part II 45:441–464, https://doi.org/10.1016/S0967-0645(97)00045-3.
  93. Mullineaux, L.S., S.W. Mills, A.K. Sweetman, A.H. Beaudreau, A. Metaxas, and H.L. Hunt. 2005. Spatial structure and temporal variation in larval abundance at hydrothermal vents on the East Pacific Rise. Marine Ecology Progress Series 293:1–16, https://doi.org/10.3354/meps293001.
  94. Mullineaux, L.S., C.H. Peterson, F. Micheli, and S.W. Mills. 2003. Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecological Monographs 73:523–542, https://doi.org/10.1890/02-0674.
  95. Murray, J., and A.F. Renard. 1891. Deep-sea deposits. Report of the Challenger Expedition. London.
  96. Nees, H.A., R.A. Lutz, T.M. Shank, and G.W. Luther III. 2009. Pre- and post-eruption diffuse flow variability among tubeworm habitats at 9°50’ north on the East Pacific Rise. Deep Sea Research II 56:1,607–1,615, https://doi.org/10.1016/j.dsr2.2009.05.007.
  97. Nees, H.A., T. Moore, K.M. Mullaugh, R.R. Holyoke, C.P. Jansen, S. Ma, E. Metzger, T.J. Waite, M. Yucel, R.A. Lutz, and others. 2008. Hydrothermal vent mussel habitat chemistry, pre- and post-eruption at 9°50’ North on the East Pacific Rise. Journal of Shellfish Research 27(1):169–176, https://doi.org/10.2983/0730-8000(2008)27[169:HVMHCP]2.0.CO;2.
  98. Nelson, D., R.M. Haymon, M. Lilley, and R. Lutz. 1991. Rapid growth of unusual hydrothermal bacteria observed at new vents during the ADVENTURE Dive Program to the EPR Crest at 9°45’–52’N. Eos, Transactions, American Geophysical Union 72:481.
  99. Neubert, M., L.S. Mullineaux, and M.F. Hill. 2006. A metapopulation approach to interpreting diversity at deep-sea hydrothermal vents. Pp. 321–350 in Marine Metapopulations. J. Kritzer and P. Sale, eds, Elsevier Academic Press.
  100. Oosting, S.E., and K.L. Von Damm. 1996. Bromide/chloride fractionation in seafloor hydrothermal fluids from 9–10°N East Pacific Rise. Earth and Planetary Science Letters 144:133–145, https://doi.org/10.1016/0012-821X(96)00149-5.
  101. Orcutt, J.A., B.L.N. Kennett, and L.M. Dorman. 1976. Structure of the East Pacific Rise from an ocean bottom seismometer survey. Geophysical Journal of the Royal Astronomical Society 45:305–320, https://doi.org/10.1111/j.1365-246X.1976.tb00328.x.
  102. Perfit, M.R., J.R. Cann, D.J. Fornari, D.K. Smith, W.I. Ridley, J. Engels, and M.E. Edwards. 2003. Interaction of seawater and lava during submarine eruptions at mid-ocean ridges. Nature 426:62–64, https://doi.org/10.1038/nature02032.
  103. Perfit, M.R., and W.W. Chadwick Jr. 1998. Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations. Pp. 59–115 in Faulting and Magmatism at Mid-Ocean Ridges. W.R. Buck, P. Delaney, and J.A. Karson, eds, Geophysical Monograph Series, vol. 92, American Geophysical Union, Washington, DC.
  104. Perfit, M.R., D.J. Fornari, M.C. Smith, J.F. Bender, C.H. Langmuir, and R.M. Haymon. 1994. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology 22:375–379, https://doi.org/10.1130/0091-7613(1994)022<0375:SSSATV>2.3.CO;2.
  105. Perfit, M.R., V.D. Wanless, W.I. Ridley, E.M. Klein, M.C. Smith, A.R. Goss, J.S. Hinds, S.W. Kutza, and D.J. Fornari. 2012. Lava geochemistry as a probe into crustal formation at the East Pacific Rise. Oceanography 25(1):89–93, https://doi.org/10.5670/oceanog.2012.06.
  106. Plouviez, S., D. Le Guen, O. Lecompte, F.H. Lallier, and D. Jollivet. 2010. Determining gene flow and the influence of selection across the equatorial barrier of the East Pacific Rise in the tube-dwelling polychaete Alvinella pompejana. BMC Evolutionary Biology 10:220, https://doi.org/10.1186/1471-2148-10-220.
  107. Pockalny, R.A., P.J. Fox, D.J. Fornari, K.C. Macdonald, and M.R. Perfit. 1997. Tectonic reconstruction of the Clipperton and Siqueiros Fracture Zones: Evidence and consequences of plate motion change for the last 3 Myr. Journal of Geophysical Research 102:3,167–3,181, https://doi.org/10.1029/96JB03391.
  108. Reynolds, J.R., C.H. Langmuir, J.F. Bender, K.A. Kastens, and W.B.F. Ryan. 1992. Spatial and temporal variability in the geochemistry of basalts from the East Pacific Rise. Nature 359:493–499, https://doi.org/10.1038/359493a0.
  109. Ridley, W.I., M.R. Perfit, D.J. Fornari, and M. Smith. 2006. Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50’N. Geochemistry Geophysics Geosystems 7, Q12O04, https://doi.org/10.1029/2006GC001316.
  110. RISE Project Group. 1980. East Pacific Rise: Hot springs and geophysical experiments. Science 207:1,421–1,433, https://doi.org/10.1126/science.207.4438.1421.
  111. Rouxel, O., W.C. Shanks, W. Bach, and K.J. Edwards. 2008. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific rise 9–10°N. Chemical Geology 252:214–227, https://doi.org/10.1016/j.chemgeo.2008.03.009.
  112. Rubin, K.H., and D.J. Fornari, 2011. Multidisciplinary collaborations in mid-ocean ridge research. Eos, Transactions, American Geophysical Union 92(17):141, https://doi.org/10.1029/2011EO170002.
  113. Rubin, K.H., J.D. Macdougall, and M.R. Perfit. 1994. 210Po/210Pb dating of recent volcanic eruptions on the sea floor. Nature 368:841–844, https://doi.org/10.1038/368841a0.
  114. Rubin, K.H., S.A. Soule, W.W. Chadwick Jr., D.J. Fornari, D.A. Clague, R.W. Embley, E.T. Baker, M.R. Perfit, D.W. Caress, and R.P. Dziak. 2012. Volcanic eruptions in the deep sea. Oceanography 25(1):142–157, https://doi.org/10.5670/oceanog.2012.12.
  115. Rubin, K.H., M. Tolstoy, D.J. Fornari, R.P. Dziak, S.A. Soule, F. Waldhauser, and K.L. Von Damm, 2008. Integrating radiometric, geophysical and thermal signals of volcanic unrest and eruption in 2005–06 at 9°50’N EPR. Eos, Transactions, American Geophysical Union 89(53):Fall Meeting Supplement Abstract B23F-07.
  116. Rubin, K.H., I. van der Zander, M.C. Smith, and E.C. Bergmanis. 2005. Minimum speed limit for ocean ridge magmatism from 210Pb-226Ra-230Th disequilibria. Nature 437:534–538, https://doi.org/10.1038/nature03993.
  117. Sancho, G., C.R. Fisher, S. Mills, F. Micheli, G.A. Johnson, H.S. Lenihan, C.H. Peterson, and L.S. Mullineaux. 2005. Selective predation by the zoarcid fish Thermarces cerberus at hydrothermal vents. Deep-Sea Research Part I 52:837–844, https://doi.org/10.1016/j.dsr.2004.12.002.
  118. Scheirer, D.S., T.M. Shank, and D.J. Fornari. 2006. Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochemistry Geophysics Geosystems 7, Q03002, https://doi.org/10.1029/2005GC001094.
  119. Schouten, H., M.A. Tivey, D.J. Fornari, and J.R. Cochran. 1999. Central anomaly magnetization high: Constraints on the volcanic construction and architecture of seismic Layer 2A at a fast-spreading mid-ocean ridge, the EPR at 9°30’–50’N. Earth and Planetary Science Letters 169:37–50, https://doi.org/10.1016/S0012-821X(99)00063-1.
  120. Shank, T.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, R.M. Haymon, and R.A. Lutz. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents along the East Pacific Rise. Deep Sea Research Part II 45:465–515, https://doi.org/10.1016/S0967-0645(97)00089-1.
  121. Shank, T.M., B. Govenar, K. Buckman, D.J. Fornari, S.A. Soule, G.W. Luther III, R.A. Lutz, C. Vetriani, M. Tolstoy, K.H. Rubin, and others. 2006. Initial biological, chemical, and geological observations after the 2005–6 volcanic eruption on the East Pacific Rise. Eos, Transactions, American Geophysical Union 87(52): Fall Meeting Supplement Abstract V13C-04.
  122. Shank, T.M., and K.M. Halanych. 2007. Toward a mechanistic understanding of larval dispersal: Insights from genomic fingerprinting of deep-sea hydrothermal vent populations. Marine Ecology 28:25–35, https://doi.org/10.1111/j.1439-0485.2007.00146.x.
  123. Sievert, S.M., and C. Vetriani. 2012. Chemoautotrophy at deep-sea vents: Past, present, and future. Oceanography 25(1):218–233, https://doi.org/10.5670/oceanog.2012.21.
  124. Soule, S.A., J. Escartín, and D.J. Fornari. 2009. A record of eruption and intrusion at a fast-spreading ridge axis: Axial summit trough of the East Pacific Rise at 9°–10°N. Geochemistry Geophysics Geosystems 10, Q10T07, https://doi.org/10.1029/2008GC002354.
  125. Soule, S.A., D.J. Fornari, M.R. Perfit, W.I. Ridley, M.H. Reed, and J.R. Cann. 2006. Incorporation of seawater into mid-ocean ridge lavas during emplacement. Earth and Planetary Science Letters 252:289–307, https://doi.org/10.1016/j.epsl.2006.09.043.
  126. Soule, S.A., D.J. Fornari, M.P. Perfit, and K. Rubin. 2007. New insights into mid-ocean ridge volcanic processes from the 2005-06 eruption of the East Pacific Rise, 9°46’-56’N. Geology 35:1,079–1,082, https://doi.org/10.1130/G23924A.1.
  127. Soule, S.A., D.J. Fornari, M.R. Perfit, M.A. Tivey, W.I. Ridley, and H. Schouten. 2005. Channelized lava flows at the East Pacific Rise crest 9°–10°N: The importance of off axis lava transport in developing the architecture of young oceanic crust. Geochemistry Geophysics Geosystems 6, Q08005, https://doi.org/10.1029/2005GC000912.
  128. Sohn, R.A., D.J. Fornari, K.L. Von Damm, J.A. Hildebrand, and S.C. Webb. 1998. Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 9°50’N. Nature 396:159–161, https://doi.org/10.1038/24146.
  129. Sohn, R.A., J.A. Hildebrand, and S.C. Webb. 1999. A microearthquake survey of the high-temperature vent fields on the volcanically active East Pacific Rise (9°50’N). Journal of Geophysical Research 104:25,367–25,377, https://doi.org/10.1029/1999JB900263.
  130. Spiess, F., K.C. Macdonald, T. Atwater, R. Ballard, A. Carranza, D. Cordoba, C. Cox, V.M. Diaz Garcia, J. Francheteau, J. Guerrero, and others. 1980. East Pacific Rise: Hot springs and geophysical experiments. Science 207:1,421–1,433, https://doi.org/10.1126/science.207.4438.1421.
  131. Stroup, D., D.R. Bohnenstiehl, M. Tolstoy, F. Waldhauser, and R.T. Weekly. 2007. The pulse of the seafloor: Tidal triggering of microearthquakes at 9°50’N East Pacific Rise. Geophysical Research Letters 34, L15301, https://doi.org/10.1029/2007GL030088.
  132. Stroup, D., M. Tolstoy, T.J. Crone, A. Malinverno, D.R. Bohnenstiehl, and F. Waldhauser. 2009. Systematic along-axis tidal triggering of microearthquakes constrains crustal permeability. Geophysical Research Letters 36, L18302, https://doi.org/10.1029/2009GL039493.
  133. Thurnherr, A.M., J.R. Ledwell, J.W. Lavelle, and L.S. Mullineaux. 2011. Hydrography and circulation near the crest of the East Pacific Rise between 9° and 10° N. Deep-Sea Research Part I 58:365–376, https://doi.org/10.1016/j.dsr.2011.01.009.
    Thurnherr, A.M., and L.C. St. Laurent. 2012. Turbulence observations in a buoyant hydrothermal plume on the East Pacific Rise. Oceanography 25(1):180–181, https://doi.org/10.5670/oceanog.2012.15.
  134. Tivey, M.K., E. Becker, R. Beinart, C.R. Fisher, P.R. Girguis, C.H. Langmuir, P.J. Michael, and A.-L. Reysenbach. 2012. Links from mantle to microbe at the Lau Integrated Study Site: Insights from a back-arc spreading center. Oceanography 25(1):62–77, https://doi.org/10.5670/oceanog.2012.04.
  135. Tolstoy, M., J.P. Cowen, E.T. Baker, D.J. Fornari, K.H. Rubin, T.M. Shank, F. Waldhauser, D.R. Bohnenstiehl, D.W. Forsyth, R.C. Holmes, and others. 2006. A sea-floor spreading event captured by seismometers. Science 314:1,920–1,922, https://doi.org/10.1126/science.1133950.
  136. Tolstoy, M., F.L. Vernon, J.A. Orcutt, and F.K. Wyatt. 2002. The breathing of the seafloor: Tidal correlations of seismicity on Axial volcano. Geology 30:503–506, https://doi.org/10.1130/0091-7613(2002)030<0503:BOTSTC>2.0.CO;2.
  137. Tolstoy, M., F. Waldhauser, D.R. Bohnenstiehl, R.T. Weekly, and W.Y. Kim. 2008. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451:181–187, https://doi.org/10.1038/nature06424.
  138. Toner, B.M., S.C. Fakra, S.J. Manganini, C.M. Santelli, M.A. Marcus, J. Moffett, O. Rouxel, C.R. German, and K.J. Edwards. 2009. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geosciences 2:197–201, https://doi.org/10.1038/ngeo433.
  139. Toomey, D.R., S.C. Solomon, and G.M. Purdy. 1994. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9°30’N. Journal of Geophysical Research 99:24,135–24,157, https://doi.org/10.1029/94JB01942.
  140. Turnipseed, M., K. Knick, R. Lipcius, J. Dreyer, and C.L. Van Dover. 2003. Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps. Ecology Letters 6:518–523, https://doi.org/10.1046/j.1461-0248.2003.00465.x.
  141. Van Dover, C.L. 2003. Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Marine Ecology Progress Series 253:55–66, https://doi.org/10.3354/meps253055.
  142. Van Dover, C.L., and R.A. Lutz. 2004. Experimental ecology at deep-sea hydrothermal vents: A perspective. Journal of Experimental Marine Biology and Ecology 300:273–307, https://doi.org/10.1016/j.jembe.2003.12.024.
  143. Vera, E.E., J.C. Mutter, P. Buhl, J.A. Orcutt, A.J. Harding, M.E. Kappus, R.S. Detrick, and T. Brocher. 1990. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. Journal of Geophysical Research 95:15,529–15,556, https://doi.org/10.1029/JB095iB10p15529.
  144. Vetriani, C., Y.S. Chew, S.M. Miller, J. Yagi, J. Coombs, R.A. Lutz, and T. Barkay. 2004b. Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Applied and Environmental Microbiology 71:220–226, https://doi.org/10.1128/AEM.71.1.220-226.2005.
  145. Vetriani, C., M.D. Speck, S.V. Ellor, R.A. Lutz, and V. Starovoytov. 2004a. Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology 54:175–181, https://doi.org/10.1099/ijs.0.02781-0.
  146. Von Damm, K.L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Pp. 222–248 in Seafloor Hydrothermal Systems: Physical, Chemical, Biologic and Geologic Interactions. S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thompson, eds, Geophysical Monograph Series, vol. 91, American Geophysical Union, Washington, DC.
  147. Von Damm, K.L. 2000. Chemistry of hydrothermal vent fluids from 9°–10° N, East Pacific Rise: “Time zero,” the immediate posteruptive period. Journal of Geophysical Research 105:11,203–11,222, https://doi.org/10.1029/1999JB900414.
  148. Von Damm, K.L. 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50’N: Geochemical evidence for changes in the upper oceanic crust. Pp. 285–305 in Hydrothermal Interactions Between the Lithosphere and Oceans. C.R. German, J. Lin, and L.M. Parson, eds, Geophysical Monograph Series, vol. 148, American Geophysical Union, Washington, DC.
  149. Von Damm, K.L., J.L. Bischoff, and R.J. Rosenbauer. 1991. Quartz solubility in hydrothermal seawater: An experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions. American Journal of Science 291:977–1,007, https://doi.org/10.2475/ajs.291.10.977.
  150. Von Damm, K.L., and M.D. Lilley. 2004. Diffuse flow hydrothermal fluids from 9°50’N East Pacific Rise: Origin, evolution, and biogeochemical controls. Pp. 245–268 in The Subseafloor Biosphere at Mid-Ocean Ridges. W.S. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary, eds, Geophysical Monograph Series, vol. 144, American Geophysical Union, Washington, DC.
  151. Von Damm, K.L., M. Lilley, W.C. Shanks, M. Brockington, A. Bray, K.M. O’Grady, E. Olson, A. Graham, and G. Proskurowski. 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth and Planetary Science Letters 206:365–378, https://doi.org/10.1016/S0012-821X(02)01081-6.
  152. Vrijenhoek, R.C. 2010. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Molecular Ecology 19:4,391–4,411, https://doi.org/10.1111/j.1365-294X.2010.04789.x.
  153. Waldhauser, F., and M. Tolstoy. 2011. Seismogenic structure and processes associated with magma upwelling and hydrothermal circulation beneath the East Pacific Rise at 9°50’N. Geochemistry Geophysics Geosystems 2, Q08T10, https://doi.org/10.1029/2011GC003568.
  154. White, S.M., R. Haymon, and S.M. Carbotte. 2006. A new view of ridge segmentation and near-axis volcanism at the East Pacific Rise, 8°–12°N, from EM300 multibeam bathymetry. Geochemistry Geophysics Geosystems 7, Q12O05, https://doi.org/10.1029/2006GC001407.
  155. White, S.M., R.H. Haymon, D.J. Fornari, M.R. Perfit, and K.C. Macdonald. 2002. Correlation between volcanic and tectonic segmentation of fast-spreading ridges: Evidence from volcanic structures and lava flow morphology on the East Pacific Rise at 9°–10°N. Journal of Geophysical Research 107(B8), 2173, https://doi.org/10.1029/2001JB000571.
  156. Wilcock, W.S.D. 2001. Tidal triggering of microearthquakes on the Juan de Fuca Ridge. Geophysical Research Letters 28:3,999–4,002, https://doi.org/10.1029/2001GL013370.
  157. Wilcock, W.S. 2004. Physical response of mid-ocean ridge hydrothermal systems to local earthquakes. Geochemistry Geophysics Geosystems 5, Q11009, https://doi.org/10.1029/2004GC000701.
  158. Wilcock, W.S.D., E.E.E. Hooft, D.R. Toomey, P.R. McGill, A.H. Barclay, D.S. Stakes, and T.M. Ramirez. 2009. The role of magma injection in localizing black-smoker activity. Nature Geoscience 2:509–513, https://doi.org/10.1038/ngeo550.
  159. Wilcock, W.S.D., S.C. Solomon, G.M. Purdy, and D.R. Toomey. 1995. Seismic attenuation structure of the East Pacific Rise near 9°30’N. Journal of Geophysical Research 100(B12):24,147–24,165, https://doi.org/10.1029/95JB02280.
  160. Williams, C., M.A. Tivey, H. Schouten, and D.J. Fornari. 2008. Central anomaly magnetization high documentation of crustal accretion along the East Pacific Rise (9°55’–9°25’N). Geochemistry Geophysics Geosystems 9, Q04015, https://doi.org/10.1029/2007GC001611.
  161. Wirsen, C.O., J.H. Tuttle, and H.W. Jannasch. 1986. Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site. Marine Biology 92:449–456, https://doi.org/10.1007/BF00392504.
  162. Won, Y., C.R. Young, R.A. Lutz, and R.C. Vrijenhoek. 2003. Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Molecular Ecology 12:169–184, https://doi.org/10.1046/j.1365-294X.2003.01726.x.
  163. Wright, D.J., R.M. Haymon, and D.J. Fornari. 1995. Crustal fissuring and its relationship to magmatic and hydrothermal processes on the East Pacific Rise crest (9°12’ to 54’N). Journal of Geophysical Research 100:6,097–6,120, https://doi.org/10.1029/94JB02876.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.