Oceanography The Official Magazine of
The Oceanography Society
Volume 30 Issue 02

View Issue TOC
Volume 30, No. 2
Pages 18 - 28

OpenAccess

The Argo Program: Present and Future

By Steven R. Jayne , Dean Roemmich , Nathalie Zilberman , Stephen C. Riser , Kenneth S. Johnson , Gregory C. Johnson , and Stephen R. Piotrowicz  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The Argo Program has revolutionized large-scale physical oceanography through its contributions to basic research, national and international climate assessment, education, and ocean state estimation and forecasting. This article discusses the present status of Argo and enhancements that are underway. Extensions of the array into seasonally ice-covered regions and marginal seas as well as increased numbers of floats along the equator and around western boundary current extensions have been proposed. In addition, conventional Argo floats, with their 2,000 m sampling limit, currently observe only the upper half of the open ocean volume. Recent advances in profiling float technology and in the accuracy and stability of float-mounted conductivity-temperature-depth sensors make it practical to obtain measurements to 6,000 m. The Deep Argo array will help observe and constrain the global budgets of heat content, freshwater, and steric sea level, as well as the full-depth ocean circulation. Finally, another extension to the Argo Program is the addition of a diverse set of chemical sensors to profiling floats in order to build a Biogeochemical-Argo array to understand the carbon cycle, the biological pump, and ocean acidification.

Citation

Jayne, S.R., D. Roemmich, N. Zilberman, S.C. Riser, K.S. Johnson, G.C. Johnson, and S.R. Piotrowicz. 2017. The Argo Program: Present and future. Oceanography 30(2):18–28, https://doi.org/10.5670/oceanog.2017.213.

References
    Argo Steering Team. 1998. On the Design and Implementation of Argo: An Initial Plan for a Global Array of Profiling Floats. International CLIVAR Project Office Report 21, GODAE Report 5. GODAE International Project Office, Melbourne, Australia, 32 pp., http://www.argo.ucsd.edu/argo-design.pdf.
  1. Biogeochemical-Argo Planning Group. 2016. The Scientific Rationale, Design, and Implementation Plan for a Biogeochemical-Argo Float Array. K.S. Johnson and H. Claustre, eds, https://doi.org/​10.13155/46601.
  2. Biogeochemical-Argo Task Team. 2016. The Rationale, Design and Implementation Plan for Biogeochemical-Argo. https://www.mbari.org/wp-content/uploads/2016/10/BGCArgoPlan​June21.pdf.
  3. Boss, E., L. Guidi, M.J. Richardson, L. Stemmann, W. Gardner, J.K.B. Bishop, R.F. Anderson, and R.M Sherrell. 2015. Optical techniques for remote and in-situ characterization of particles pertinent to GEOTRACES. Progress in Oceanography 133:43–54, https://doi.org/10.1016/​j.pocean.2014.09.007.
  4. Boyer, T.P., J.I. Antonov, O.K. Baranova, H.E. Garcia, D.R. Johnson, R.A. Locarnini, A.V. Mishonov, T.D. O’Brien, D. Seidov, I.V. Smolyar, and M.M. Zweng. 2009. World Ocean Database 2009, Chapter 1: Introduction, NOAA Atlas NESDIS 66. S. Levitus, ed., US Government Printing Office, Washington, DC, 216 pp., ftp://ftp.nodc.noaa.gov/pub/WOD09/DOC/wod09_intro.pdf.
  5. Chang, Y.-S., S. Zhang, A. Rosati, T.L. Delworth, and W.F. Stern. 2013. An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dynamics 40:775–803, https://doi.org/10.1007/s00382-012-1412-2.
  6. Claustre, H., J. Bishop, E. Boss, S. Bernard, J.-F. Berthon, C. Coatanoan, K. Johnson, A. Lotiker, O. Ulloa, M.J. Perry, and others. 2010. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 2). Venice, Italy, September 21–25, 2009, J. Hall, D.E. Harrison, and D. Stammer, eds, ESA Publication WPP-306, https://doi.org/10.5270/OceanObs09.cwp.17.
  7. Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, and others. 2013. Long-term Climate Change: Projections, Commitments and Irreversibility. Pp. 1,029–1,136 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.024.
  8. Cravatte, S., W.S. Kessler, N. Smith, S.E. Wijffels, and contributing authors. 2016: First Report of Tropical Pacific Observing System 2020. GOOS-215, 200 pp., http://tpos2020.org/first-report.
  9. Davis, R.E., T.J. Sherman, and J. Dufour. 2001. Profiling ALACEs and other advances in autonomous subsurface floats. Journal of Atmospheric and Oceanic Technology 18:982–993, https://doi.org/10.1175/1520-0426(2001)018​<0982:PAAOAI>2.0.CO;2.
  10. Davis, R.E., D.C. Webb, L.A. Regier, and J. Dufour. 1992. The Autonomous Lagrangian Circulation Explorer (ALACE). Journal of Atmospheric and Oceanic Technology 9:264–285, https://doi.org/​10.1175/1520-0426(1992)009<0264:TALCE>​2.0.CO;2.
  11. Desbruyères, D., E.L. McDonagh, and B.A. King, 2016. Observational advances in estimates of oceanic heating. Current Climate Change Reports 2:127–134, https://doi.org/10.1007/s40641-016-0037-7.
  12. Durack, P., S. Wijffels, and R. Matear. 2012. Ocean salinities reveal strong global water cycle intensification during 1950–2000. Science 336:455–458, https://doi.org/10.1126/science.1212222.
  13. Fischer, A.S., J. Hall, D.E. Harrison, D. Stammer, and J. Benveniste. 2010. Conference summary—Ocean information for society: Sustaining the benefits, realizing the potential. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 1). Venice, Italy, September 21–25, 2009, J. Hall, D.E. Harrison, and D. Stammer, eds, ESA Publication WPP-306, https://doi.org/10.5270/OceanObs09.Summary.
  14. Gillis, J. 2014. In the ocean, clues to change. New York Times, August 12, 2014:D3, https://www.nytimes.com/2014/08/12/science/in-the-ocean-clues-to-change.html.
  15. Gould, W.J. 2005. From Swallow floats to Argo: The development of neutrally buoyant floats. Deep Sea Research Part II 52:529–543, https://doi.org/​10.1016/j.dsr2.2004.12.005.
  16. Johnson, G.C. 2008. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. Journal of Geophysical Research 113, C05027, https://doi.org/10.1029/2007JC004477.
  17. Johnson, G.C., and A.N. Birnbaum. 2017. As El Niño builds, Pacific Warm Pool expands, ocean gains more heat. Geophysical Research Letters 44:438–445, https://doi.org/​10.1002/​2016GL071767.
  18. Johnson, G.C., and D.P. Chambers. 2013. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. Journal of Geophysical Research 118:4,228–4,240, https://doi.org/10.1002/jgrc.20307.
  19. Johnson, G.C., J.M. Lyman, and N.G. Loeb. 2016. Improving estimates of Earth’s energy imbalance. Nature Climate Change 6:639–640, https://doi.org/​10.1038/nclimate3043.
  20. Johnson, G.C., J.M. Lyman, and S.G. Purkey. 2015. Informing Deep Argo array design using Argo and full-depth hydrographic section data. Journal of Atmospheric and Oceanic Technology 32:2,187–2,198, https://doi.org/10.1175/JTECH-D-15-0139.1.
  21. Johnson, K.S., W.M. Berelson, E.S. Boss, Z. Chase, H. Claustre, S.R. Emerson, N. Gruber, A. Körtzinger, M.J. Perry, and S.C. Riser. 2009. Observing biogeochemical cycles at global scales with profiling floats and gliders: Prospects for a global array. Oceanography 22(3):216–225, http://doi.org/​10.5670/oceanog.2009.81.
  22. Johnson, K.S., and H. Claustre. 2016. Bringing biogeochemistry into the Argo age. Eos 97, https://doi.org/10.1029/2016EO062427.
  23. Johnson, K.S., L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D. Swift, and S.C. Riser. 2013. Long-term nitrate measurements in the ocean using the In Situ Ultraviolet Spectrophotometer: Sensor integration into the APEX profiling float. Journal of Atmospheric and Oceanic Technology 30:1,854–1,866, https://doi.org/10.1175/JTECH-D-12-00221.1.
  24. Johnson, K.S., H.W. Jannasch, L.J. Coletti, V.A. Elrod, T.R. Martz, Y. Takeshita, R.J. Carlson, and J.G. Connery. 2016. Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks. Analytical Chemistry 88:3,249–3,256, https://doi.org/10.1021/acs.analchem.5b04653.
  25. Johnson, K.S., J.N. Plant, S.C. Riser, and D. Gilbert. 2015. Air oxygen calibration of oxygen optodes on a profiling float array. Journal of Atmospheric and Oceanic Technology 32:2,160–2,172, https://doi.org/​10.1175/JTECH-D-15-0101.1.
  26. Klatt, O., O. Boebel, and E. Fahrbach. 2007. A profiling float’s sense of ice. Journal of Atmospheric and Oceanic Technology 24:1,301–1,308, https://doi.org/​10.1175/JTECH2026.1.
  27. Kobayashi, T., K. Watanabe and M. Tachikawa. 2013. Deep NINJA collects profiles down to 4,000 meters. Sea Technology 54:41–44, https://www.sea-technology.com/features/2013/0213/deep_ninja.php.
  28. Körtzinger, A., J. Schimanski, and U. Send. 2005. High quality oxygen measurements from profiling floats: A promising new technique. Journal of Atmospheric and Oceanic Technology 22:302–308, https://doi.org/10.1175/JTECH1701.1.
  29. Lee, C.M., H. Melling, H. Eiken, P. Schlosser, J.-C. Gascard, A. Proshutinsky, E. Fahrback, C. Mauritzen, J. Morison, and I. Polykov. 2010. Autonomous platforms in the Arctic Observing Network. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 2). Venice, Italy, September 21–25, 2009, J. Hall, D.E. Harrison, and D. Stammer, eds, ESA Publication WPP-306, https://doi.org/10.5270/OceanObs09.cwp.54.
  30. Le Reste, S., V. Dutreuil, X. André, V. Thierry, C. Renaut, P.-Y. Le Traon, and G. Maze. 2016. “Deep-Arvor”: A new profiling float to extend the Argo observations down to 4000-m depth. Journal of Atmospheric and Oceanic Technology 33:1,039–1,055, https://doi.org/10.1175/JTECH-D-15-0214.1.
  31. Nguyen, A.T., V. Ocaña, V. Garg, P. Heimbach, J.M. Toole, R.A. Krishfield, C.M. Lee, and L. Rainville. 2017. On the benefit of current and future ALPS data for improving Arctic coupled ocean-sea ice state estimation. Oceanography 30(2):69–73, https://doi.org/10.5670/oceanog.2017.223.
  32. Owens, W.B., and A. Wong. 2009. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by Θ-S climatology. Deep Sea Research Part I 56:450–457, https://doi.org/10.1016/j.dsr.2008.09.008.
  33. Palmer, M.D. 2017. Reconciling estimates of ocean heating and Earth’s radiation budget. Current Climate Change Reports 3:78–86, https://doi.org/​10.1007/s40641-016-0053-7.
  34. Purkey, S.G., and G.C. Johnson. 2010. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate 23:6,336–6,351, https://doi.org/10.1175/2010JCLI3682.1.
  35. Purkey, S.G., and G.C. Johnson. 2013. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of Climate 26:6,105–6,122, https://doi.org/10.1175/JCLI-D-12-00834.1.
  36. Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, G.C. Johnson, S.A. Josey, A. Kostianoy, and others. 2013. Observations: Ocean. Pp. 255–316 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/​10.1017/​CBO9781107415324.010.
  37. Riser, S.C., H.J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change 5:145–153, https://doi.org/10.1038/nclimate2872.
  38. Roemmich, D., and J. Gould. 2003. The future of climate observations in the global ocean. Sea Technology 44:10–15.
  39. Roemmich, D., and the Argo Steering Team. 2009. Argo: The challenge of continuing 10 years of progress. Oceanography 22(3):46–55, https://doi.org/​10.5670/oceanog.2009.65.
  40. Rudnick, D.L., and M.J. Perry, eds. 2003. ALPS: Autonomous and Lagrangian Platforms and Sensors. Workshop Report, 64 pp, https://geo-prose.com/pdfs/alps_report.pdf.
  41. Swallow, J.C. 1955. A neutral-buoyancy float for measuring deep currents. Deep Sea Research 3:74–81, https://doi.org/10.1016/0146-6313(55)90037-X.
  42. Talley, L.D. 2013. Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: Schematics and transports. Oceanography 26(1):80–97, https://doi.org/​10.5670/oceanog.2013.07.
  43. Talley, L.D., R.A. Feely, B.M. Sloyan, R. Wanninkhof, M.O. Baringer, J.L. Bullister, C.A. Carlson, S.C. Doney, R.A. Fine, E. Firing, and others. 2016. Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Annual Review of Marine Science 8:185–215, https://doi.org/10.1146/annurev-marine-052915-100829.
  44. von Schuckmann, K., M.D. Palmer, K.E. Trenberth, A. Cazenave, D. Chambers, N. Champollion, J. Hansen, S.A. Josey, N. Loeb, P.-P. Mathieu, and others. 2016. An imperative to monitor Earth’s energy imbalance. Nature Climate Change 6:138−144, https://doi.org/10.1038/nclimate2876.
  45. Wong, A., R. Keeley, T. Carval, and the Argo Data Management Team. 2015. Argo Quality Control Manual for CTD and Trajectory Data. https://doi.org/10.13155/33951.
  46. Wong, A.P.S., and S.C. Riser. 2011. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. Journal of Physical Oceanography 41:1,102–1,115, https://doi.org/10.1175/2011JPO4516.1.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.