Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 40 - 47

OpenAccess

Technology for Ocean Acidification Research: Needs and Availability

By Todd R. Martz , Kendra L. Daly , Robert H. Byrne , Jonathon H. Stillman , and Daniela Turk 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Diverse instruments, both custom built and commercially available, have been used to measure the properties of the aqueous CO2 system in seawater at differing levels of autonomy (automated benchtop, continuous underway, autonomous in situ). In this review, we compare the capabilities of commercially available instruments with the needs of oceanographers in order to highlight major shortfalls in the state-of-the art instrumentation broadly available to the ocean acidification (OA) scientific community. In addition, we describe community surveys that identify needs for continued development and refinement of sensor and instrument technologies, expansion of programs that provide Certified Reference Materials, development of best practices documentation for autonomous sensors, and continued and expanded sensor intercomparison experiments.

Citation

Martz, T.R., K.L. Daly, R.H. Byrne, J.H. Stillman, and D. Turk. 2015. Technology for ocean acidification research: Needs and availability. Oceanography 28(2):40–47, https://doi.org/10.5670/oceanog.2015.30.

References
    ACT (Alliance for Coastal Technologies). 2012a. Protocols for the Performance Verification of In Situ pH Sensors.
  1. ACT. 2012b. Use of, Satisfaction With, and Requirements for In Situ pH Sensors. http://www.act-us.info/Download/Customer_Needs_and_Use/pH/index.html.
  2. Bandstra, L., B. Hales, and T. Takahashi. 2006. High-frequency measurements of total CO2: Method development and first oceanographic observations. Marine Chemistry 100:24–38, https://doi.org/10.1016/j.marchem.2005.10.009.
  3. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57:698–710, https://doi.org/10.4319/lo.2012.57.3.0698.
  4. Bates, N., L. Merlivat, L. Beaumont, and A. Pequignet. 2000. Intercomparison of shipboard and moored CARIOCA buoy seawater fCO2 measurements in the Sargasso Sea. Marine Chemistry 72:239–255, https://doi.org/10.1016/S0304-4203(00)00084-0.
  5. Bellerby, R.G.J., D.R. Turner, G.E. Millward, and P.J. Worsfold. 1995. Shipboard flow injection determination of sea water pH with spectrophotometric detection. Analytica Chimica Acta 309:259–270, https://doi.org/10.1016/0003-2670(95)00054-4.
  6. Bockmon, E.E., and A.G. Dickson. 2015. An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements. Marine Chemistry 171:36–43, https://doi.org/10.1016/j.marchem.2015.02.002.
  7. Bockmon, E.E., C.A. Frieder, M.O. Navarro, L.A. White-Kershek, and A.G. Dickson. 2013. Technical note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature. Biogeosciences 10:5,967–5,975, https://doi.org/10.5194/bg-10-5967-2013.
  8. Bradshaw, A.L., P.G. Brewer, D.K. Shafer, and R.T. Williams. 1981. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth and Planetary Science Letters 55:99–115, https://doi.org/10.1016/0012-821X(81)90090-X.
  9. Bresnahan, P.J., T.R. Martz, Y. Takeshita, K.S. Johnson, and M. Lashomb. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography 9:44–60, https://doi.org/10.1016/j.mio.2014.08.003.
  10. Byrne, R.H. 2014. Measuring ocean acidification: New technology for a new era of ocean chemistry. Environmental Science & Technology 48:5,352–5,360, https://doi.org/10.1021/es405819p.
  11. Byrne, R.H., M.D. DeGrandpre, R.T. Short, T.R. Martz, L. Merlivat, C. McNeil, F.L. Sayles, R. Bell, and P. Fietzek. 2010. Sensors and systems for observations of marine CO2 system variables. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol. 2. Venice, Italy, September 21–25, 2009, J. Hall, D.E. Harrison, and D. Stammer, eds, ESA Publication WPP-306, https://doi.org/10.5270/OceanObs09.cwp.13.
  12. Carter, B., J. Radich, H. Doyle, and A. Dickson. 2013. An automated system for spectrophotometric seawater pH measurements. Limnology and Oceanography Methods 11(1):16–27, https://doi.org/10.4319/lom.2013.11.16.
  13. Crim, R.N., J.M. Sunday, and C.D.G. Harley. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology 400:272–277, https://doi.org/10.1016/j.jembe.2011.02.002.
  14. Daly, K.L., R.H. Byrne, A.G. Dickson, S.M. Gallager, M.J. Perry, and M.K. Tivey. 2004. Chemical and biological sensors for time-series research: Current status and new directions. Marine Technology Society Journal 38:121–143, https://doi.org/10.4031/002533204787522767.
  15. Dickson, A.G. 1993. The measurement of seawater pH. Marine Chemistry 44:131–142, https://doi.org/10.1016/0304-4203(93)90198-w.
  16. Dickson, A.G. 2001. Reference materials for oceanic CO2 measurements. Oceanography 14(4):21–22. See pp. 21–22 in http://www.tos.org/oceanography/archive/14-4_feely.pdf.
  17. Dickson, A.G., C.L. Sabine, and J.R. Christian. 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, IOCCP Report No. 8., 191 pp., http://cdiac.ornl.gov/oceans/Handbook_2007.html.
  18. Doropoulos, C., S. Ward, G. Diaz-Pulido, O. Hoegh-Guldberg, and P.J. Mumby. 2012. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology Letters 15:338–346, https://doi.org/10.1111/j.1461-0248.2012.01743.x.
  19. Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensent, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36:221–236, https://doi.org/10.1007/s12237-013-9594-3.
  20. Easley, R.A., and R.H. Byrne. 2012. Spectrophoto-metric calibration of pH electrodes in seawater using purified m-cresol purple. Environmental Science & Technology 46:5,018–5,024, https://doi.org/10.1021/es300491s.
  21. Fangue, N.A., M.J. O’Donnell, M.A. Sewell, P.G. Matson, A.C. MacPherson, and G.E. Hofmann. 2010. A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnology and Oceanography Methods 8:441–452, https://doi.org/10.4319/lom.2010.8.441.
  22. Ferrari, M.C., R.P. Manassa, D.L. Dixson, P.L. Munday, M.I. McCormick, M.G. Meekan, A. Sih, and D.P. Chivers. 2012. Effects of ocean acidification on learning in coral reef fishes. PloS ONE 7:e31478, https://doi.org/10.1371/journal.pone.0031478.
  23. Fietzek, P., B. Fiedler, T. Steinhoff, and A. Körtzinger. 2013. In situ quality assessment of a novel underwater pCO2 sensor based on membrane equilibration and NDIR spectrometry. Journal of Atmospheric and Oceanic Technology 31:181–196, https://doi.org/10.1175/JTECH-D-13-00083.1.
  24. Fietzek, P., and A. Körtzinger. 2010. Optimization of a membrane based NDIR-sensor for dissolved carbon dioxide. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol. 2. Venice, Italy, September 21–25, 2009, J. Hall, D.E. Harrison, and D. Stammer, eds, ESA Publication WPP-306, http://www.oceanobs09.net/proceedings/ac/FCXNL-09A02-1662159-1-ac4a09.pdf.
  25. Gobler, C.J., and S.C. Talmage. 2013. Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences 10:2,241–2,253, https://doi.org/10.5194/bg-10-2241-2013.
  26. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, and others. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, https://doi.org/10.1371/journal.pone.0028983.
  27. Jiang, Z.-P., D.J. Hydes, S.E. Hartman, M.C. Hartman, and J.M. Campbell. 2014. Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnology and Oceanography Methods 12:262–278.
  28. Johengen, T., G.J. Smith, D. Schar, M. Atkinson, H. Purcell, D. Loewensteiner, Z. Epperson, and M. Tamburri. 2015. Performance Demonstration for Autonomous pH Sensor Technologies. UMCES Technical Report Series, Alliance for Coastal Technologies, http://www.act-us.info/evaluations.php.
  29. Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology 19:1,884–1,896, https://doi.org/10.1111/gcb.12179.
  30. Kuffner, I.B., A.J. Andersson, P.L. Jokiel, K.U.S. Rodgers, and F.T. Mackenzie. 2008. Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1:114–117, https://doi.org/10.1038/ngeo100.
  31. Lamb, M.F., C.L. Sabine, R.A. Feely, R. Wanninkhof, R.M. Key, G.C. Johnson, F.J. Millero, K. Lee, T.-H. Peng, A. Kozyr, and others. 2001. Consistency and synthesis of Pacific Ocean CO2 survey data. Deep Sea Research Part II 49:21–58.
  32. Li, Q., F. Wang, Z.A. Wang, D. Yuan, M. Dai, J. Chen, J. Dai, and K.A. Hoering. 2013. Automated spectrophotometric analyzer for rapid single-point titration of seawater total alkalinity. Environmental Science & Technology 47:11,139–11,146, https://doi.org/10.1021/es402421a
  33. Liu, X., R.H. Byrne, L. Adornato, K.K. Yates, E. Kaltenbacher, X. Ding, and B. Yang. 2013. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater. Environmental Science & Technology 47:11,106–11,114, https://doi.org/10.1021/es4014807
  34. Liu, X., M.C. Patsavas, and R.H. Byrne. 2011. Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements. Environmental Science & Technology 45:4,862–4,868, https://doi.org/10.1021/es200665d.
  35. Marion, G.M., F.J. Millero, M.F. Camões, P. Spitzer, R. Feistel, and C.T.A. Chen. 2011. pH of seawater. Marine Chemistry 126:89–96, https://doi.org/10.1016/j.marchem.2011.04.002.
  36. Mathis, J.T., S.R. Cooley, K.K. Yates, and P. Williamson. 2015. Introduction to this special issue on ocean acidification: The pathway from science to policy. Oceanography 28(2):10–15, https://doi.org/10.5670/oceanog.2015.26.
  37. Martz, T.R., J.J. Carr, C.R. French, and M.D. Degrandpre. 2003. A submersible autonomous sensor for spectrophotometric pH measurements of natural waters. Analytical Chemistry 75:1,844–1,850, https://doi.org/10.1021/ac020568l.
  38. McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, S. Cudd, R.A. Feely, I.W. Jefferds, and others. 2015. Core principles of the California Current Acidification Network: Linking chemistry, physics, and ecological effects. Oceanography 28(2):160–169, https://doi.org/10.5670/oceanog.2015.39.
  39. McNeil, C.L., B.D. Johnson, and D.M. Farmer. 1995. In-situ measurement of dissolved nitrogen and oxygen in the ocean. Deep Sea Research Part I 42:819–826, https://doi.org/10.1016/0967-0637(95)97829-W.
  40. Munday, P.L., D.L. Dixson, J.M. Donelson, G.P. Jones, M.S. Pratchett, G.V. Devitsina, and K.B. Døving. 2009. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America 106:1,848–1,852, https://doi.org/10.1073/pnas.0809996106.
  41. Orr, J.C., J.M. Epitalon, and J.-P. Gattuso. 2014. Comparison of seven packages that compute ocean carbonate chemistry. Biogeosciences Discussions 11:5,327–5,397, https://doi.org/10.5194/bgd-11-5327-2014.
  42. Paganini, A.W., N.A. Miller, and J.H. Stillman. 2014. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. The Journal of Experimental Biology 217:3,974–3,980.
  43. Parker, L.M., P.M. Ross, and W.A. O’Connor. 2009. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biology 15:2,123–2,136, https://doi.org/10.1111/j.1365-2486.2009.01895.x.
  44. Patsavas, M.C., R.H. Byrne, and X. Liu. 2013. Purification of meta-cresol purple and cresol red by flash chromatography: Procedures for ensuring accurate spectrophotometric seawater pH measurements. Marine Chemistry 150:19–24, https://doi.org/10.1016/j.marchem.2013.01.004.
  45. Pierrot, D., C. Neill, K. Sullivan, R. Castle, R. Wanninkhof, H. Lüger, T. Johannessen, A. Olsen, R.A. Feely, and C.E. Cosca. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep Sea Research Part II 56:512–522, https://doi.org/10.1016/j.dsr2.2008.12.005.
  46. Prien, R.D. 2007. The future of chemical in situ sensors. Marine Chemistry 107:422–432, https://doi.org/10.1016/j.marchem.2007.01.014.
  47. Riebesell, U., V.J. Fabry, L. Hansson, and J.-P. Gattuso, eds. 2010. Guide to Best practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, 260 pp.
  48. Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1,131–1,134, https://doi.org/10.1130/G30210A.1.
  49. Spaulding, R.S., M.D. DeGrandpre, J.C. Beck, R.D. Hart, B. Peterson, E.H. De Carlo, P.S. Drupp, and T.R. Hammer. 2014. Autonomous in situ measurements of seawater alkalinity. Environmental Science & Technology 48:9,573–9,581, https://doi.org/10.1021/es501615x.
  50. Tamburri, M.N., T.H. Johengen, M.J. Atkinson, D.W.H. Schar, C.Y. Robertson, H. Purcell, G.J. Smith, A. Pinchuk, and E.N. Buckley. 2011. Alliance for Coastal Technologies: Advancing moored pCO2 instruments in coastal waters. Marine Technology Society Journal 45:43–51, https://doi.org/10.4031/MTSJ.45.1.4.
  51. Waldmann, C., M. Tamburri, R.D. Prien, and P. Fietzek. 2010. Assessment of sensor performance. Ocean Science 6:235–245, http://www.ocean-sci.net/6/235/2010/os-6-235-2010.pdf.
  52. Wang, Z.A., S.N. Chu, and K.A. Hoering. 2013. High-frequency spectrophotometric measurements of total dissolved inorganic carbon in seawater. Environmental Science & Technology 47:7,840–7,847, https://doi.org/10.1021/es400567k.
  53. Yu, P.C., P.G. Matson, T.R. Martz, and G.E. Hofmann. 2011. The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. Journal of Experimental Marine Biology and Ecology 400:288–295.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.