Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 02

View Issue TOC
Volume 27, No. 2
Pages 118 - 131

OpenAccess

Submarine Paleoseismology Along Populated Transform Boundaries: The Enriquillo-Plantain-Garden Fault, Canal du Sud, Haiti, and the North Anatolian Fault, Marmara Sea, Turkey

By Cecilia M.G. McHugh , Leonardo Seeber, Marie-Helene Cormier, and Matthew Hornbach 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Continental transform boundaries cross heavily populated regions and are associated with destructive earthquakes worldwide. The devastating 1999 Turkey earthquakes and the offshore 2010 Haiti earthquake emphasized the urgent need to study the submerged segments of continental transforms. In response, the rapidly evolving field of submarine paleoseismology is focusing its attention on understanding the relationships between sedimentation, seafloor ruptures, and earthquake recurrence intervals along submarine faults. In Canal du Sud, Haiti, the 2010 earthquake-triggered sedimentation events were documented from nearshore to the deep basin by measuring the excess 234Th in sediment cores. This radioisotope, with a half-life of 24 days, tracked mass wasting, turbidites, turbidite-homogenite units, and a sediment plume that remained in the water column for at least two months after the earthquake. However, the turbidite units in Canal du Sud, Haiti, provide an incomplete record of the region’s earthquake history, likely because sedimentation rates are too low for sedimentation events to be triggered by all earthquakes. In contrast, in the Marmara Sea basins, there is very good correlation between turbidites and the historical record of earthquakes dating back 2,000 years. The difference between these correlations is likely related to both sedimentation rates and particulars of the ruptures. Future research along the Enriquillo-Plantain-Garden fault in Haiti and along similar low sedimentation plate boundaries should focus on multiple fault segments in order to obtain complete earthquake recurrence histories.

Citation

McHugh, C.M.G., L. Seeber, M.-H. Cormier, and M. Hornbach. 2014. Submarine paleoseismology along populated transform boundaries: The Enriquillo-Plantain-Garden Fault, Canal du Sud, Haiti, and the North Anatolian Fault, Marmara Sea, Turkey. Oceanography 27(2):118–131, https://doi.org/10.5670/oceanog.2014.47.

References
    Ambraseys, N.N. 2002. The seismic activity in the Marmara Sea region over the last 2000 years. Bulletin of the Seismological Society of America 92:1–18, https://doi.org/10.1785/0120000843.
  1. Armijo, R., B. Meyer, A. Hubert, and A.A. Barka. 1999. Westward propagation of the north Anatolian fault into the northern Aegean: Timing and kinematics. Geology 27:267–270, https://doi.org/10.1130/0091-7613(1999)027<0267:WPOTNA>2.3.CO;2.
  2. Bakum, W.H., C.H. Flores, and U.S. ten Brink. 2012. Significant earthquakes on the Enriquillo fault system, Hispaniola, 1500–2010: Implications for seismic hazard. Bulletin of the Seismological Society of America 102:18–30, https://doi.org/10.1785/0120110077.
  3. Barka, A.A. 1999. The 17 August 1999 Izmit earthquake. Science 285:1,858–1,859, https://doi.org/10.1126/science.285.5435.1858.
  4. Barnes, P.M., H.C. Bostock, H.L. Neil, L.J. Strachan, and M. Gosling. 2013. A 2300-year paleoearthquake record of the Southern Alpine fault and Fiordland subduction zone, New Zealand, based on stacked turbidites. Bulletin of the Seismological Society of America 10:2,434–2,446, https://doi.org/10.1785/0120120314.
  5. Beck, C., B. Mercier de Lépinay, J.L. Schneider, M. Cremer, M.N. Çağatay, E. Wendenbaum, S. Boutareaud, G. Menot, S. Schmidt, O. Weber, and others. 2007. Late Quaternary co-seismic sedimentation in the Sea of Marmara’s deep basins. Sedimentary Geology 199:65–89, https://doi.org/10.1016/j.sedgeo.2005.12.031.
  6. Brothers, D.S., N.W. Driscoll, G.M. Kent, A.J. Harding, J.M. Babcock, and R.L. Baskin. 2009. Tectonic evolution of the Salton Sea inferred from seismic reflection data. Nature Geoscience 2:581–584, https://doi.org/10.1038/ngeo590.
  7. Çağatay, M.N., L. Erel, L.G. Bellucci, A. Polonia, L. Gasperini, K.K. Eris, U. Sancar, D. Biltekin, G. Uçarkus, U.B. Ulgen, and E. Damci. 2012. Sedimentary earthquake records in the Izmit Gulf, Sea of Marmara, Turkey. Sedimentary Geology 282:347–359, https://doi.org/10.1016/j.sedgeo.2012.10.001.
  8. Calais, E., A. Freed, G. Mattioli, F. Amelung, S. Jonsson, P. Jansma, S.-H. Hong, T. Dixon, C. Prepetit, and R. Momplaisir. 2010. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nature Geoscience 3:794–799, https://doi.org/10.1038/ngeo992.
  9. Chapron, E., C. Beck, M. Pouchet, and J.F. Deconninck. 1999. 1822 earthquake-triggered homogenite in Lake Le Bouget (NW Alps). Terra Nova 11:86–92, https://doi.org/10.1046/j.1365-3121.1999.00230.x.
  10. Cormier, M.-H., L. Seeber, C.M.G. McHugh, A. Polonia, M.N. Çağatay, O. Emre, L. Gasperini, N. Görür, G. Bortoluzzi, E. Bonatti, and others. 2006. North Anatolian fault in the Gulf of Izmit (Turkey): Rapid vertical motion in response to minor bends of a non-vertical continental transform. Journal of Geophysical Research 111, B04102, https://doi.org/10.1029/2005JB003633.
  11. DeMets, C., P. Jansma, G. Mattioli, T. Dixon, F. Farina, R. Bilham, E. Calais, and P. Mann. 2000. GPS geodetic constraints on Caribbean-North America plate motion. Geophysical Research Letters 27:437–440, https://doi.org/10.1029/1999GL005436.
  12. Dixon, T.H., F. Farina, C. DeMets, P. Jansma, P. Mann, and E. Calais. 1998. Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations. Journal of Geophysical Research 103(B7):15,157–15,182, https://doi.org/10.1029/97JB03575.
  13. Douilly, R., J.S. Haase, W.L. Ellsworth, M.-P. Bouin, E. Calais, S.J. Symithe, J.G. Armbruster, B.M. de Lepinay, A. Deschamps, S.-L. Mildor, and others. 2013. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments. Bulletin of the Seismological Society of America 103:2,305–2,325, https://doi.org/10.1785/0120120303.
  14. Drab, L., A. Hubert-Ferrari, S. Schmidt, and P. Martinez. 2012. The earthquake record in the western part of the Sea of Marmara, Turkey. Natural Hazards and Earth System Sciences 12:1,235–1,254.
  15. Eris, K.K., N. Çağatay, C. Beck, B. Mercier de Lépinay, and C. Campos. 2012. Late-Pleistocene to Holocene sedimentary fills of the Cinarcik Basin of the Sea of Marmara. Sedimentary Geology 281:151–165, https://doi.org/10.1016/j.sedgeo.2012.09.001.
  16. Escalona, A., P. Mann, and M. Jaimes. 2011. Miocene to recent Cariaco basin, offshore Venezuela: Structure, tectonosequences and basin-forming mechanisms. Marine and Petroleum Geology 28:177–199, https://doi.org/10.1016/j.marpetgeo.2009.04.001.
  17. Goldfinger, C., A.E. Morey, C.H. Nelson, J. Gutiérrez-Pastor, J.E. Johnson, E. Karabanov, J. Chaytor, and A. Ericsson. 2007. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the northern San Andreas fault based on turbidite stratigraphy. Earth and Planetary Science Letters 254:9–27, https://doi.org/10.1016/j.epsl.2006.11.017.
  18. Goldfinger, C., C.H. Nelson, and J.E. Johnson. 2003. Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites. Annual Review of Earth and Planetary Science 31:555–577, https://doi.org/10.1146/annurev.earth.31.100901.141246.
  19. Goldfinger, C., C.H. Nelson, A.E. Morey, J.R. Johnson, J. Patton, E. Karabanov, J. Gutiérrez-Pastor, A.T. Erikson, E. Gracia, G. Dunhill, and others. 2012. Turbidite event history: Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. US Geological Survey Professional Paper 1661-F:1–170. Available at http://pubs.usgs.gov/pp/pp1661f.
  20. Gracia, E., A. Vizcaino, C. Escutia, A. Asioi, A. Rodes, R. Pallas, J. Garcia-Orellana, S. Lebreiro, and C. Goldfinger. 2010. Holocene earthquake record offshore Portugal (SW Iberia): Testing turbidite paleoseismology in a slow-convergence margin. Quaternary Science Reviews 29:1,156–1,172.
  21. Gutiérrez-Pastor, J., C.H. Nelson, C. Goldfinger, and C. Escutia. 2013. Sedimentology of seismo-turbidites off the Cascadia and Northern California active tectonic continental margins, Northwest Pacific Ocean. Marine Geology 336:99–119, https://doi.org/10.1016/j.margeo.2012.11.010.
  22. Hashimoto, M., Y. Fukushima, and Y. Fukahata. 2011. Fan-delta uplift and mountain subsidence during the Haiti 2010 earthquake. Nature Geoscience 4:255–259, https://doi.org/10.1038/ngeo1115.
  23. Hayes, G.P., R.W. Briggs, A. Sladen, E.J. Fielding, C.S. Prentice, K.W. Hudnut, P. Mann, F.W. Taylor, A.J. Crone, R.D. Gold, and others. 2010. Complex rupture during the 12 January 2010 Haiti earthquake. Nature Geoscience 3:800–805, https://doi.org/10.1038/ngeo977.
  24. Hornbach, M.J., N. Braudy, R.W. Briggs, M.-H. Cormier, M.B. Davis, J.B. Diebold, N. Dieudonne, R. Douilly, C. Frohlich, S.P.S. Gulick, and others. 2010. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nature Geoscience 3:783–788, https://doi.org/10.1038/ngeo975.
  25. Hough, S.E., J.R. Altidor, D. Anglade, D. Given, M.G. Guillard, Z. Maharrey, M. Meremonte, B.S.-L. Mirador, C. Prépetit, and A. Yong. 2010. Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake. Nature Geoscience 3:778–782, https://doi.org/10.1038/ngeo988.
  26. Ikehara, K., K. Usami, and T. Irino. 2013. Sediment resuspension, transportation and redeposition by tsunami: Example from the 2011 Tohoku-Oki tsunami on Sendai and Sanriku shelves. Abstract 1800306, Fall Meeting of the American Geophysical Union, San Francisco, CA.
  27. Koehler, R.D., P. Mann, C.S. Prentice, L. Brown, B. Benford, and M. Wiggins-Grandison. 2012. Enriquillo-Plantain Garden fault zone in Jamaica: Paleoseismology and seismic hazard. Bulletin of the Seismological Society of America 103:971–983, https://doi.org/10.1785/0120120215.
  28. Manaker, D.M., E. Calais, A.M. Freed, S.T. Ali, P. Przybylski, G.S. Mattioli, P. Jansma, C. Prépetit, and J.B. de Chabalier. 2008. Interseismic plate coupling in the northeast Caribbean. Geophysical Journal International 174:889–903, https://doi.org/10.1111/j.1365-246X.2008.03819.x.
  29. Mann, P., F.W. Taylor, R.L. Edwards, and T.L. Ku. 1995. Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: An example from the northeastern Caribbean plate margin. Tectonophysics 246:1–69, https://doi.org/10.1016/0040-1951(94)00268-E.
  30. McHugh, C.M.G., N. Braudy, M.N. Çağatay, C. Sorlien, M.-H. Cormier, L. Seeber, and P. Henry. 2014. Seafloor fault ruptures along the North Anatolia fault in the Marmara Sea, Turkey: Link with the adjacent basin turbidite record. Marine Geology 353:65–83, https://doi.org/10.1016/j.margeo.2014.03.005.
  31. McHugh, C.M., L. Seeber, N. Braudy, M.-H. Cormier, M.B. Davis, N. Dieudonne, J. Deming, J.B. Diebold, R. Douilly, S.P.S. Gulick, and others. 2011a. Offshore sedimentary effects of the 12 January Haiti earthquake. Geology 39:723–726, https://doi.org/10.1130/G31815.1.
  32. McHugh, C.M.G., L. Seeber, M.-H. Cormier, J. Dutton, M.N. Çağatay, A. Polonia, W.B.F. Ryan, and N. Görür. 2006. Submarine earthquake geology along the North Anatolia Fault in the Marmara Sea, Turkey: A model for transform basin sedimentation. Earth and Planetary Science Letters 248:661–684, https://doi.org/10.1016/j.epsl.2006.05.038.
  33. McHugh, C.M., L. Seeber, M.-H. Cormier, M.H. Hornbach, R. Momplaisir, F. Waldhaourser, C. Sorlien, M. Steckler, and S. Gulick. 2011b. A Seismo-tectonic signal from offshore sedimentation: The 2010 Haiti earthquake and prior events. Abstract T33G-2492, Fall Meeting of the American Geophysical Union, San Francisco CA.
  34. Mercier de Lépinay, B., A. Deschamps, F. Klingelhoefer, Y. Mazabraud, B. Delouis, V. Clouard, Y. Hello, J. Crozon, B. Marcaillou, D. Graindorge, and others. 2011. The 2010 Haiti earthquake: A complex fault pattern constrained by seismologic and tectonic observations. Geophysical Research Letters 38, L22305, https://doi.org/10.1029/2011GL049799.
  35. Mikada, H., K. Mitsuzawa, H. Matsumoto, T. Watanabe, S. Morita, R. Otsuka, H. Sugioka, T. Baba, E. Araki, and K. Suyehiro. 2006. New discoveries in dynamics of a M8 earthquake-phenomena and their implications from the 2003 Tokachi-Oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426:95–105, https://doi.org/10.1016/j.tecto.2006.02.021.
  36. Noda, A., T. TuZino, Y. Kanai, R. Furukawa, and J. Uchida. 2008. Paleoseismicity along the southern Kuril Trench deduced from submarine-fan turbidites. Marine Geology 204:73–90, https://doi.org/10.1016/j.margeo.2008.05.015.
  37. Parsons, T., S. Toda, R.S. Stein, A.A. Barka, and J.H. Dieterich. 2000. Heightened odds of large earthquakes near Istanbul: An interaction-based probability calculation. Science 288:661–665, https://doi.org/10.1126/science.288.5466.661.
  38. Patton, J.R., C. Goldfinger, A. Morey, C. Romsos, B. Black, Y.S. Djadjadihardja, and U. Udrekh. 2013. Seismoturbidite record as preserved at core sites at the Cascadia and Sumatra-Andaman subduction zones. Natural Hazards and Earth System Sciences 13:833–867, https://doi.org/10.5194/nhess-13-833-2013.
  39. Plesch, A., J.H., Shaw, C. Benson, W.A. Bryant, S. Carena, M. Cooke, J. Dolan, G. Fuis, E. Gath, L. Grant, and others. 2007. Community Fault Model (CFM) for Southern California. Bulletin of the Seismological Society of America 97:1,793–1,802, https://doi.org/10.1785/0120050211.
  40. Prentice, C.S., P. Mann, A.J. Crone, R.D. Gold, K.W. Hudnut, R.W. Briggs, R.D. Koehler, and P. Jean. 2010. Seismic hazard of the Enriquillo–Plantain Garden fault in Haiti inferred from paleoseismology. Nature Geoscience 3:789–793, https://doi.org/10.1038/ngeo991.
  41. Polonia, A., G. Panieri, L. Gasperini, G. Gasparotto, L.G. Bellucci, and L. Torelli. 2012. Turbidite paleoseismology in the Calabrian Arc Subduction Complex (Ionian Sea). Geochemistry, Geophysics, Geosystems 14:1,525–2,027, https://doi.org/10.1029/2012GC004402.
  42. Pouderoux, H., G. Lamarche, and J.-N. Proust. 2012. Building an 18,000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand. Natural Hazards Earth System Science 12:2,077–2,101, https://doi.org/10.5194/nhess-12-2077-2012.
  43. Reilinger, R.E., M.N. Toksöz, S.C. McClusky, and A.A. Barka. 2000. 1999 Izmit, Turkey earthquake was no surprise. GSA Today 10:1–6.
  44. Reilinger, R., S. McClusky, D. Paradissis, S. Ergintav, and P. Vernant. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488:22-30, https://doi.org/10.1016/j.tecto.2009.05.027.
  45. Rios, J.K., C.M. McHugh, L. Seeber, S. Blair, and C.C. Sorlien. 2012. Latest Pleistocene to Holocene evolution of the Baie de Port au Prince, Haiti. Abstract T41A-2572, American Geophysical Union Fall Meeting, San Francisco CA.
  46. Sari, E., and M.N. Çağatay. 2006. Turbidites and their association with past earthquakes in the deep Cinarcik Basin of the Marmara Sea. Geo-Marine Letters 26:69–76, https://doi.org/10.1007/s00367-006-0017-3.
  47. Schubert, C. 1982. Neotectonics of Boconó fault, western Venezuela. Tectonophysics 85:205-220.
  48. Seeber, L., M.-H. Cormier, C. McHugh, Ö. Emre, A. Polonia, and C. Sorlien 2006. Rapid subsidence and sedimentation from oblique slip near a bend on the North Anatolian transform fault in the Marmara Sea, Turkey. Geology 34:933–936, https://doi.org/10.1130/G22520A.1.
  49. Seeber, L., C. Mueller, T. Fujiwara, K. Arai, W. Sohn, Y. S. Djajadihardja, and M.-H. Cormier. 2007. Accretion, mass wasting, and partitioned strain over the 26 Dec 2004 MW 9.2 rupture offshore Aceh, northern Sumatra. Earth Planetary Science Letters 263:16–31, https://doi.org/10.1016/j.epsl.2007.07.057.
  50. St-Onge, G., E. Chapron, S. Mulsow, M. Salas, M. Viel, M. Debret, A. Foucher, T. Mulder, T. Winiarski, M. Desmet, and others. 2012. Comparison of earthquake-triggered turbidites from the Saguenay (eastern Canada) and Reloncavi (Chilean margin) fjords: Implications for paleoseismicity and sedimentology. Sedimentary Geology 243–244:9–107, https://doi.org/10.1016/j.sedgeo.2011.11.003.
  51. Strasser, M., M. Kölling, C. dos Santos Ferreira, H.G. Fink, T. Fujiwara, S. Henkel, K. Ikehara, T. Kanamatsu, K. Kawamura, S. Kodaira, and others. 2013. A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake. Geology 41:935–938, https://doi.org/10.1130/G34477.1.
  52. Taylor, F.W., P. Mann, R.W. Briggs, C.S. Prentice, P. Jean, C.-C. Shen, H.W. Chiang, and X.-Y. Jiang 2011. Late Holocene paleo-uplift events at the Tapion restraining bend in Haiti: Implications for earthquake recurrence in the vicinity of the 2010 rupture zone. Abstract T33G-2491, Fall Meeting of the American Geophysical Union, San Francisco CA.
  53. Thunell, R., E. Tappa, R. Varela, M. Llano, Y. Astor, F. Muller-Karger, and R. Bohrer. 1999. Increased marine sediment suspension and fluxes following an earthquake. Nature 398:233–236, https://doi.org/10.1038/18430.
  54. Vila, J.-M., J. Butterlin, T. Calmus, B. Mercier de Lépinay, and B. Van den Berghe. 1985. Carte geologique d’Haiti au 1/1,000,000 avec notice explicative detaille. In Atlas d’Haiti. C. Girault, ed., Publication of CEGET-CNRS, Bordeaux, France.
  55. Top
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.