Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 02

View Issue TOC
Volume 31, No. 2
Pages 194 - 205

Slow Volcanoes: The Intriguing Similarities Between Marine Asphalt and Basalt Lavas

Yann Marcon Heiko SahlingIan R. MacDonaldPaul WinterstellerChristian dos Santos FerreiraGerhard Bohrmann
Article Abstract

In 2003, the Chapopote asphalt flow was discovered in the southern Gulf of Mexico at a depth of 2,900 m. Subsequent exploration has expanded the known extent of asphalt volcanism across abyssal depths in much of this region. Aspects of asphalt flow morphology are analogous to ropy pāhoehoe flows known from eruptions of basaltic lava on land, but the timing and formation sequence of asphalt flows has been difficult to infer because limited visibility in the deep ocean makes it challenging to image large areas of the seafloor. Combining data from autonomous underwater vehicle mapping and remotely operated vehicle navigation with powerful optical mosaicking techniques, we assembled georeferenced images of the Chapopote asphalt flows. The largest image captured an area of 3,300 m² with over 15 billion pixels and resolved objects at centimeter scale. Augmenting this optical resolution with microbathymetry led to the recognition that very large asphalt pavements exhibiting highly varied morphologies and weathering states comprised a series of at least three separate flow units, one on top of another. The Chapopote asphalt volcano likely erupts during phases of intensified activity separated by periods of reduced activity. After extrusion, chemical and physical changes in the asphalt generate increasing viscosity gradients both along the flow path and between the flow’s surface and core. This allows the asphalt to form pāhoehoe lava-like shapes and to support dense chemosynthetic communities over timescales of hundreds of years.


Marcon, Y., H. Sahling, I.R. MacDonald, P. Wintersteller, C. dos Santos Ferreira, and G. Bohrmann. 2018. Slow volcanoes: The intriguing similarities between marine asphalt and basalt lavas. Oceanography 31(2):194–205, https://doi.org/10.5670/oceanog.2018.202.

Supplementary Materials

Arnaubec, A., J. Opderbecke, A.G. Allais, and L. Brignone. 2015. Optical mapping with the ARIANE HROV at IFREMER: The MATISSE processing tool. OCEANS 2015 - Genova 1–6, https://doi.org/​10.1109/​OCEANS-​Genova.​2015.7271713.

Bergquist, D.C., F.M. Williams, and C.R. Fisher. 2000. Longevity record for deep-sea invertebrate. Nature 403(6769):499–500, https://doi.org/​10.1038/​35000647.

Boetius, A., K. Ravenschlag, C.J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B.B. Jørgensen, U. Witte, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626, https://doi.org/10.1038/35036572.

Bohrmann, G. 2014. Asphalt Volcanism. Chapter in Encyclopedia of Marine Geosciences, Living Edition. J. Harff, M. Meschede, S. Petersen, and J. Thiede, eds, Springer, Dordrecht, https://doi.org/​10.1007/978-94-007-6644-0_1-1.

Brüning, M., H. Sahling, I.R. MacDonald, F. Ding, and G. Bohrmann. 2010. Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico. Marine and Petroleum Geology 27(5):1,093–1,106, https://doi.org/10.1016/​j.marpetgeo.2009.09.005.

Caress, D.W., and D.N. Chayes. 1995. New software for processing sidescan data from sidescan-​capable multibeam sonars. OCEANS ’95 Conference Proceedings 2:997–1,000, https://doi.org/​10.1109/​OCEANS.1995.528558.

Caress, D.W., D.N. Chayes, and C. dos Santos Ferreira. 2018. MB-System Seafloor Mapping Software: Processing and Display of Swath Sonar Data, https://www.mbari.org/products/research-software/mb-system.

Cordes, E.E., D.C. Bergquist, and C.R. Fisher. 2009. Macro-ecology of Gulf of Mexico cold seeps. Annual Review of Marine Science 1(1):143–168, https://doi.org/10.1146/​annurev.marine.010908.163912.

Cordes, E.E., D.C. Bergquist, K. Shea, and C.R. Fisher. 2003. Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. Ecology Letters 6(3):212–219, https://doi.org/10.1046/j.1461-0248.2003.00415.x.

Ding, F., V. Spiess, M. Brüning, N. Fekete, H. Keil, and G. Bohrmann. 2008. A conceptual model for hydrocarbon accumulation and seepage processes around Chapopote asphalt site, southern Gulf of Mexico: From high resolution seismic point of view. Journal of Geophysical Research: Solid Earth 113(B8):B08404, https://doi.org/​10.1029/​2007JB005484.

Edgeworth, R., B.J. Dalton, and T. Parnell. 1984. The pitch drop experiment. European Journal of Physics 5(4):198, https://doi.org/​10.1088/​0143-0807/5/4/003.

ESRI. 2017. Fundamentals of georeferencing a raster dataset. ArcGIS Desktop, http://desktop.arcgis.com/en/arcmap/10.4/manage-data/raster-and-​images/fundamentals-for-georeferencing-a-raster-​dataset.htm (retrieved March 7, 2018).

Fisher, C.R., I.A. Urcuyo, M.A. Simpkins, and E. Nix. 1997. Life in the slow lane: Growth and longevity of cold-seep vestimentiferans. Marine Ecology 18(1):83–94, https://doi.org/​10.1111/j.1439-0485.1997.tb00428.x.

Franco, S.I., C. Canet, A. Iglesias, and C. Valdés-González. 2013. Seismic activity in the Gulf of Mexico. A preliminary analysis. Boletín de La Sociedad Geológica Mexicana 65(3):447–455, https://doi.org/10.18268/bsgm2013v65n3a2.

Fujikura, K., T. Yamanaka, P.Y.G. Sumida, A.F. Bernardino, O.S. Pereira, T. Kanehara, Y. Nagano, C.R. Nakayama, M. Nobrega, V.H. Pellizari, and others. 2017. Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep Sea Research Part II 146:35–44, https://doi.org/​10.1016/​j.dsr2.2017.04.002.

Harris, A.J.L., and S.K. Rowland. 2015. Lava flows and rheology. Pp. 321–342 in The Encyclopedia of Volcanoes, 2nd ed. H. Sigurdsson, ed., Academic Press, Amsterdam, https://doi.org/10.1016/B978-​0-12-​385938-​9.00017-1.

Hatschek, E. 1928. The Viscosity of Liquids. D. Van Nostrand Company, New York, 245 pp.

Hodgson, S.F. 1987. Onshore Oil & Gas Seeps in California. California Department of Conservation, Division of Oil and Gas, Sacramento, 97 pp.

Hovland, M., I.R. MacDonald, H. Rueslåtten, H.K. Johnsen, T. Naehr, and G. Bohrmann. 2005. Chapopote Asphalt Volcano may have been generated by supercritical water. Eos, Transactions American Geophysical Union 86(42):397–402, https://doi.org/10.1029/2005EO420002.

Jeffreys, H. 1925. LXXXIV. The flow of water in an inclined channel of rectangular section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 49(293):793–807, https://doi.org/​10.1080/14786442508634662.

Jones, D.O.B., A. Walls, M. Clare, M.S. Fiske, R.J. Weiland, R. O’Brien, and D.F. Touzel. 2014. Asphalt mounds and associated biota on the Angolan margin. Deep Sea Research Part I 94:124–136, https://doi.org/10.1016/​j.dsr.2014.08.010.

Ludvigsen, M., B. Sortland, G. Johnsen, and H. Singh. 2007. Applications of geo-referenced underwater photo mosaics in marine biology and archaeology. Oceanography 20(4):140–149, https://doi.org/​10.5670/​oceanog.2007.14.

MacDonald, I.R., G. Bohrmann, E. Escobar, F. Abegg, P. Blanchon, V. Blinova, W. Brückmann, M. Drews, A. Eisenhauer, X. Han, and others. 2004. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304(5673):999–1,002, https://doi.org/​10.1126/science.1097154.

Marcon, Y. 2014. LAPMv2: An improved tool for underwater large-area photo-mosaicking. Oceans - St. John’s, 2014 1–10, https://doi.org/10.1109/OCEANS.2014.7003185.

Marcon, Y., H. Sahling, and G. Bohrmann. 2013. LAPM: A tool for underwater large-area photo-mosaicking. Geoscientific Instrumentation, Methods and Data Systems 2(2):189–198, https://doi.org/10.5194/gi-2-189-2013.

Nix, E.R., C.R. Fisher, J. Vodenichar, and K.M. Scott. 1995. Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico. Marine Biology 122(4):605–617, https://doi.org/10.1007/BF00350682.

NOAA. 2017. Active asphalt seep discovered in the Northern Gulf of Mexico. Okeanos Explorer, December 17, http://oceanexplorer.noaa.gov/okeanos/explorations/ex1711/logs/dec17/welcome.html.

Pochettino, A. 1914. Su le proprietà dei gorpi plastici. Il Nuovo Cimento (1911–1923) 8(1):77–108, https://doi.org/10.1007/BF02959318.

Ramirez-Llodra, E., P.A. Tyler, M.C. Baker, O.A. Bergstad, M.R. Clark, E. Escobar, L.A. Levin, L. Menot, A.A. Rowden, C.R. Smith, and C.L. Van Dover. 2011. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6(8):e22588, https://doi.org/10.1371/​journal.pone.0022588.

Rowe, G.T., and M.C. Kennicutt. 2008. Introduction to the Deep Gulf of Mexico Benthos Program. Deep Sea Research Part II 55(24):2,536–2,540, https://doi.org/10.1016/j.dsr2.2008.09.002.

Rowland, S.K., and G.P. Walker. 1990. Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure. Bulletin of Volcanology 52(8):615–628, https://doi.org/10.1007/BF00301212.

Rubin-Blum, M., C.P. Antony, C. Borowski, L. Sayavedra, T. Pape, H. Sahling, G. Bohrmann, M. Kleiner, M.C. Redmond, D.L. Valentine, and N. Dubilier. 2017. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology 2(8):17093, https://doi.org/10.1038/nmicrobiol.2017.93.

Sahling, H. 2017. RV METEOR Cruise Report M114, Natural Hydrocarbon Seepage in the Southern Gulf of Mexico, Kingston–Kingston, 12 February–28 March 2015. Geowissenschaften, Universität Bremen, Bremen, 215 pp.

Sahling, H., C. Borowski, E. Escobar-Briones, A. Gaytán-Caballero, C.-W. Hsu, M. Loher, I. MacDonald, Y. Marcon, T. Pape, M. Römer, and others. 2016. Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences 13(15):4,491–4,512, https://doi.org/​10.5194/bg-13-4491-2016.

Schubotz, F., J.S. Lipp, M. Elvert, S. Kasten, X.P. Mollar, M. Zabel, G. Bohrmann, and K.-U. Hinrichs. 2011. Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico. Geochimica et Cosmochimica Acta 75(16):4,377–4,398, https://doi.org/​10.1016/​j.gca.2011.05.025.

Smith, E.B., K.M. Scott, E.R. Nix, C. Korte, and C.R. Fisher. 2000. Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico brine pool. Ecology 81(9):2,392–2,403, https://doi.org/10.2307/177462.

Tia, M., and B.E. Ruth. 1987. Basic rheology and rheological concepts established by H.E. Schweyer. Pp. 118–145 in Asphalt Rheology: Relationship to Mixture. Special Technical Publication 941, American Society for Testing and Materials, Philadelphia, 9 pp, https://doi.org/10.1520/stp18525s.

Valentine, D.L., C.M. Reddy, C. Farwell, T.M. Hill, O. Pizarro, D.R. Yoerger, R. Camilli, R.K. Nelson, E.E. Peacock, S.C. Bagby, and others. 2010. Asphalt volcanoes as a potential source of methane to late Pleistocene coastal waters. Nature Geoscience 3(5):345–348, https://doi.org/10.1038/ngeo848.

Vernon, J.W., and R.A. Slater. 1963. Submarine tar mounds, Santa Barbara County, California. AAPG Bulletin 47(8):1,624–1,627, https://doi.org/10.1306/bc743aff-16be-11d7-8645000102c1865d.

Weiland, R.J., G.P. Adams, R.D. McDonald, T.C. Rooney, and L.M. Wills. 2008. Geological and biological relationships in the Puma appraisal area: From salt diapirism to chemosynthetic communities. Proceedings of Offshore Technology Conference, May 5–8, 2008, Houston, TX, https://doi.org/10.4043/19360-MS.

Williamson, S.C., N. Zois, and A.T. Hewitt. 2008. Integrated site investigation of seafloor features and associated fauna, Shenzi Field, Deepwater Gulf of Mexico. Proceedings of Offshore Technology Conference, May 5–8, 2008, Houston, TX, https://doi.org/10.4043/19356-MS.