Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 106 - 118

OpenAccess

Slow Motion Earthquakes: Taking the Pulse of Slow Slip with Scientific Ocean Drilling

By Laura M. Wallace , Matt J. Ikari, Demian M. Saffer, and Hiroko Kitajima 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The discovery of a spectrum of slow earthquakes and slow slip events on many of Earth’s major tectonic faults has sparked a revolution in the fields of seismology, geodesy, and fault mechanics. Until about 15 years ago, it was believed that faults either failed rapidly in damaging earthquakes or by creeping at rates of plate tectonic motion. However, the widespread observation of episodic, slow fault slip events at plate boundaries around the world, including at subduction zones, has revealed that fault slip behavior spans a continuum of modes, from steady creep to fast, earthquake-inducing slip. Understanding the processes that control these various failure modes is one key to unlocking the physics of earthquake nucleation and slip on faults. Scientific ocean drilling holds a unique place at the forefront of these efforts by allowing direct access to fault zones and sediment in the subsurface where slow slip events occur, by enabling near-field monitoring in borehole observatories, and by providing samples of incoming sedimentary succession that comprises the protolith for material in slow slip source regions at subduction zones. Here, we summarize fundamental contributions from scientific ocean drilling at subduction zones to this emerging field.

Citation

Wallace, L.M., M.J. Ikari, D.M. Saffer, and H. Kitajima. 2019. Slow motion earthquakes: Taking the pulse of slow slip with scientific ocean drilling. Oceanography 32(1):106–118, https://doi.org/10.5670/oceanog.2019.131.

References
    Araki, E., D.M. Saffer, A. Kopf, L.M. Wallace, T. Kimura, Y. Machida, and S. Ide. 2017. Recurring and triggered slow slip events near the trench at the Nankai Trough subduction megathrust. Science 356:1,157–1,160, https://doi.org/10.1126/​science.aan3120.
  1. Audet, P., M.G. Bostock, N.I. Christensen, and S.M. Peacock. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457(7225):76–78, https://doi.org/10.1038/nature07650.
  2. Barker, D.H.N., S. Henrys, F.C. Tontini, P.M. Barnes, D. Bassett, E. Todd, and L.M. Wallace. 2018. Geophysical constraints on the relationship between seamount subduction, slow slip and tremor at the north Hikurangi subduction zone, New Zealand. Geophysical Research Letters 45(23):12,804–12,813, https://doi.org/​10.1029/2018GL080259.
  3. Baumberger, T., P. Berthoud, and C. Caroli. 1999. Physical analysis of the state- and rate-​dependent friction law: Part II. Dynamic friction. Physical Review B 60(6):3,928–3,939, https://doi.org/​10.1103/​PhysRevB.60.3928.
  4. Bell, R., R. Sutherland, D.H.N. Barker, S. Henrys, S. Bannister, L. Wallace, and J. Beavan. 2010. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophysical Journal International 180(1):34–48, https://doi.org/​10.1111/j.1365-246X.2009.04401.x.
  5. Brodsky, E.E., D. Saffer, P. Fulton, F. Chester, M. Conin, K. Huffman, J.C. Moore, and H.Y. Wu. 2017. The postearthquake stress state on the Tōhoku megathrust as constrained by reanalysis of the JFAST breakout data. Geophysical Research Letters 44(16):8,294–8,302, https://doi.org/​10.1002/2017GL074027.
  6. Brown, K.M., M.D. Tryon, H.R. DeShon, L.M. Dorman, and S.Y. Schwartz. 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters 238:189–203, https://doi.org/10.1016/​j.epsl.2005.06.055.
  7. Bürgmann, R. 2018. The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters 495:112–134, https://doi.org/​10.1016/j.epsl.2018.04.062.
  8. Chester, F.M., J.J. Mori, N. Eguchi, S. Toczko, and Expedition 343/343T Scientists. 2013. Proceedings of the Integrated Ocean Drilling Program, vol. 343/343T. Integrated Ocean Drilling Program Management International Inc., Tokyo, http://publications.iodp.org/proceedings/​343_343T/343title.htm.
  9. Davis, E.E., and H.W. Villinger. 2006. Transient formation fluid pressures and temperatures in the Costa Rica forearc prism and subducting oceanic basement: CORK monitoring at ODP Sites 1253 and 1255. Earth and Planetary Science Letters 245:232–244, https://doi.org/10.1016/​j.epsl.2006.02.042.
  10. Davis, E.E., K. Wang, K. Becker, and M. Kinoshita. 2009. Co-seismic and post-seismic pore-fluid pressure changes in the Philippine Sea plate and Nankai decollement in response to a seismogenic strain event off Kii Peninsula, Japan. Earth, Planets, Space 61:649–657, https://doi.org/10.1186/BF03353174.
  11. Davis, E.E., H. Villinger, and T. Sun. 2015. Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica. Earth and Planetary Science Letters 410:117–127, https://doi.org/10.1016/j.epsl.2014.11.015.
  12. Dieterich, J.H. 1979. Modeling of rock friction: Part 1. Experimental results and constitutive equations. Journal of Geophysical Research 84(B5):2,161–2,168, https://doi.org/​10.1029/JB084iB05p02161.
  13. Dieterich, J.H. 1981. Constitutive properties of faults with simulated gouge. Pp. 102–120 in Mechanical Behavior of Crustal Rocks: The Handin Volume. N.L. Carter, M. Friedman, J.M. Logan, and D.W. Stearns, eds, Geophysical Monograph Series vol. 24, American Geophysical Union, Washington, DC, https://doi.org/10.1029/GM024p0103.
  14. Dieterich, J.H. 1986. A model for the nucleation of earthquake slip. Pp. 37–47 in Earthquake Source Mechanics. S. Das, J. Boatwright, and C.H. Scholz, eds, Geophysical Monograph Series, vol. 37, American Geophysical Union, Washington, DC, https://doi.org/10.1029/GM037p0037.
  15. Dixon, T.H., Y. Jiang, R. Malservisi, R. McCaffrey, N. Voss, M. Protti, and V. Gonzalez. 2014. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture. Proceedings of the National Academy of Sciences of the United States of America 111(48):17,039–17,044, https://doi.org/​10.1073/pnas.1412299111.
  16. Douglas, A., J. Beavan, L. Wallace, and J. Townend. 2005. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophysical Research Letters 32, L16305, https://doi.org/​10.1029/2005GL023607.
  17. Dragert, H., K. Wang, and T.S. James. 2001. A silent slip event on the deeper Cascadia subduction interface. Science 292:1,526–1,528, https://doi.org/​10.1126/science.1060152.
  18. Goulty, N.R., and R. Gilman. 1978. Repeated creep events on the San Andreas Fault near Parkfield, California, recorded by a strainmeter array. Journal of Geophysical Research 83(B11):5,415–5,419, https://doi.org/10.1029/JB083iB11p05415.
  19. Han, S., N.L. Bangs, S.M. Carbotte, D.M. Saffer, and J.C. Gibson. 2017. Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geoscience 10:954–959, https://doi.org/​10.1038/s41561-017-0007-2.
  20. Hirose, H.K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki. 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophysical Research Letters 26(21):3,237–3,240, https://doi.org/​10.1029/1999GL010999.
  21. Hirose, H., and K. Obara. 2005. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth, Planets, and Space 57:961–972, https://doi.org/10.1186/BF03351875.
  22. Huffman, K.A., and D.M. Saffer. 2016. In situ stress magnitudes at the toe of the Nankai Trough Accretionary Prism, offshore Shikoku Island, Japan. Journal of Geophysical Research 121(2):1,202–1,217, https://doi.org/10.1002/2015JB012415.
  23. Hüpers, A., M.E. Torres, S. Owari, L.C. McNeill, B. Dugan, T.J. Henstock, K.L. Milliken, K.E. Petronotis, J. Backman, S. Boulange, and others. 2017. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science 356:841–844, https://doi.org/​10.1126/science.aal3429.
  24. Ide, S., G.C. Beroza, D.R. Shelly, and T. Uchide. 2007. A scaling law for slow earthquakes. Nature 447:76–79, https://doi.org/10.1038/nature05780.
  25. Ikari, M.J., D.M. Saffer, and C. Marone. 2009. Frictional and hydrologic properties of a major splay fault system, Nankai subduction zone. Geophysical Research Letters 36(20), L20313, https://doi.org/​10.1029/2009GL040009.
  26. Ikari, M.J., and D.M. Saffer. 2011. Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. Geochemistry, Geophysics, Geosystems 12, Q0AD11, https://doi.org/10.1029/2010GC003442.
  27. Ikari, M.J., C. Marone, D.M. Saffer, and A.J. Kopf. 2013. Slip weakening as a mechanism for slow earthquakes. Nature Geoscience 6(6):468–472, https://doi.org/10.1038/ngeo1818.
  28. Ikari, M.J., Y. Ito, K. Ujiie, and A.J. Kopf. 2015. Spectrum of slip behaviour in Tōhoku fault zone samples at plate tectonic slip speeds. Nature Geoscience 8:870–874, https://doi.org/10.1038/ngeo2547.
  29. Ikari, M.J., and A.J. Kopf. 2017. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. Science Advances 3:e1701269, https://doi.org/10.1126/sciadv.1701269.
  30. Ikari, M.J., A.J. Kopf, A. Hüpers, and C. Vogt. 2018. Lithologic control of frictional strength variation in subduction zone sediment inputs. Geosphere 14(2):604–625, https://doi.org/10.1130/GES01546.1.
  31. Ito, Y., and K. Obara. 2006. Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. Geophysical Research Letters 33, L09302, https://doi.org/​10.1029/2006GL025883.
  32. Ito, Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose. 2007. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315(5811):503–506, https://doi.org/10.1126/science.1134454.
  33. Ito, Y., R. Hino, M. Kido, H. Fujimoto, Y. Osada, D. Inazu, Y. Ohta, T. Iinuma, M. Ohzono, S. Miura, and others. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tōhoku-oki earthquake. Tectonophysics 600:14–26, https://doi.org/​10.1016/j.tecto.2012.08.022.
  34. Jannasch, H.W., E.E. Davis, M. Kastner, J.D. Morris, T.L. Pettigrew, J.N. Plant, E.A. Solomon, H.W. Villinger, and C.G. Wheat. 2003. CORK-II: Long-term monitoring of fluid chemistry, fluxes, and hydrology in instrumented boreholes at the Costa Rica subduction zone. Pp. 1–36 in Proceedings of the Ocean Drilling Program, Initial Reports, vol. 205. J.D. Morris, H.W. Villinger, and A. Klaus, eds, College Station, TX, https://doi.org/10.2973/odp.proc.ir.205.102.2003.
  35. Kamei, R., R.G. Pratt, and T. Tsuji. 2012. Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth and Planetary Science Letters 317–318:343–353, https://doi.org/10.1016/j.epsl.2011.10.042.
  36. Kaneda, Y., K. Kawaguchi, E. Araki, H. Matsumoto, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Hori, T. Baba, and N. Takahashi. 2015. Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. Pp. 643–662 in Seafloor Observatories. P. Favali, L. Beranzoli, and A. De Santis, eds, Springer Praxis Books, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-11374-1_25.
  37. Kato, A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata. 2012. Propagation of slow slip leading up to the Mw 9.0 Tōhoku-oki earthquake. Science 335:705–708, https://doi.org/​10.1126/science.1215141.
  38. Kinoshita, M., K. Becker, S. Toczko, and the Expedition 380 Scientists. 2018. Expedition 380 Preliminary Report: NanTroSEIZE Stage 3: Frontal Thrust Long-Term Borehole Monitoring System (LTBMS). International Ocean Discovery Program, College Station, TX, https://doi.org/10.14379/iodp.pr.380.2018.
  39. Kitajima, H., and D.M. Saffer. 2012. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophysical Research Letters 39(23), L23301, https://doi.org/​10.1029/2012GL053793.
  40. Kodaira, S., T. Iidaka, A. Kato, J.-O. Park, T. Iwasaki, and Y. Kaneda. 2004. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304(5675):1,295–1,298, https://doi.org/​10.1126/science.1096535.
  41. Kopf, A., E. Araki, S. Toczko, and the Expedition 332 Scientists. 2011. Proceedings of the Integrated Ocean Drilling Program, 332: NanTroSEIZE Stage 2: Riserless Observatory. Integrated Ocean Drilling Program Management International Inc., Tokyo, Japan, https://doi.org/10.2204/iodp.proc.332.2011.
  42. Kostoglodov, V., S.K. Singh, J.A. Santiago, S.I. Franco, K.M. Larson, A.R. Lowry, and R. Bilham. 2003. A large silent earthquake in the Guerrero seismic gap, Mexico. Geophysical Research Letters 30(15), https://doi.org/10.1029/2003GL017219.
  43. Lay, T., and H. Kanamori. 2011. Insights from the great 2011 Japan earthquake. Physics Today 64(12):33–39, https://doi.org/10.1063/PT.3.1361.
  44. Leeman, J.R., D.M. Saffer, M.M. Scuderi, and C. Marone. 2016. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications 7:11104, https://doi.org/​10.1038/ncomms11104.
  45. Li, J., D.J. Shillington, D.M. Saffer, A. Bécel, M.R. Nedimović, H. Kuehn, S.C. Webb, K.M. Keranen, and G.A. Abers. 2018. Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska megathrust. Geology 46(4):299–302, https://doi.org/​10.1130/​G39557.1.
  46. Linde, A.T., M.T. Gladwin, M.J. Johnston, R.L. Gwyther, and R.G. Bilham. 1996. A slow earthquake sequence on the San Andreas Fault. Nature 383(6595):65–68, https://doi.org/​10.1038/383065a0.
  47. Liu, Y., and J.R. Rice. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research 112(B9), B09404, https://doi.org/​10.1029/2007JB004930.
  48. Marone, C. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences 26:643–696, https://doi.org/10.1146/annurev.earth.26.1.643.
  49. Morris, J.D., H.W. Villinger, A. Klaus, D.M. Cardace, V.M.C. Chavagnac, P.D. Clift, M. Haeckel, T. Hisamitsu, M. Kastner, M. Pfender, and others. 2003. Proceedings of the Ocean Drilling Program, Initial Reports, 205. Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/​odp.proc.ir.205.2003.
  50. Obana, K., and S. Kodaira. 2009. Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth and Planetary Science Letters 287(1–2):168–174, https://doi.org/10.1016/​j.epsl.2009.08.005.
  51. Obara, K., 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296(5573):1,679–1,681, https://doi.org/​10.1126/science.1070378.
  52. Obara, K., H. Hirose, F. Yamamizu, and K. Kasahara. 2004. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophysical Research Letters 31(23), L23602, https://doi.org/10.1029/2004GL020848.
  53. Obara, K., and A. Kato. 2016. Connecting slow earthquakes to huge earthquakes. Science 353(6296):253–257, https://doi.org/​10.1126/​science.aaf1512.
  54. Ohta, Y., J.T. Freymueller, S. Hreinsdóttir, and H. Suito. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters 247(1–2):108–116, https://doi.org/10.1016/​j.epsl.2006.05.013.
  55. Outerbridge, K.C., T.H., Dixon, S.Y. Schwartz, J.I. Walter, M. Protti, V. Gonzalez, J. Biggs, M. Thorwart, and W. Rabbel. 2010. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. Journal of Geophysical Research 115, B10408, https://doi.org/10.1029/2009JB006845.
  56. Park, J.O., G. Fujie, L. Wijerathne, T. Hori, S. Kodaira, Y. Fukao, G.F. Moore, N.L. Bangs, S.I. Kuramoto, and A. Taira. 2010. A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology 38(3):283–286, https://doi.org/10.1130/G30205.1.
  57. Pecher, I.A., P.M. Barnes. L.J. LeVay, and the Expedition 372 Scientists. 2018. IODP Expedition 372 Preliminary Report: Creeping Gas Hydrate Slides and Hikurangi LWD. International Ocean Discovery Program, https://doi.org/10.14379/​iodp.pr.372.2018.
  58. Peng, Z., and J. Gomberg. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience 3(9):599–607, https://doi.org/10.1038/ngeo940.
  59. Polet, J., and H. Kanamori. 2000. Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International 142:684–702, https://doi.org/10.1046/j.1365-246x.2000.00205.x.
  60. Rabinowitz, H.S., H.M. Savage, R.M. Skarbek, M.J. Ikari, B.M. Carpenter, and C. Collettini. 2018. Frictional behavior of input sediments to the Hikurangi Trench, New Zealand. Geochemistry, Geophysics, Geosystems 19, https://doi.org/​10.1029/2018GC007633.
  61. Radiguet, M., F. Cotton, M. Vergnolle, M. Campillo, A. Walpersdorf, N. Cotte, and V. Kostoglodov. 2012. Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of Geophysical Research 117, B04305, https://doi.org/​10.1029/2011JB008801.
  62. Rogers, G., and H. Dragert. 2003. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300(5627):1,942–1,943, https://doi.org/10.1126/science.1084783.
  63. Ruina, A. 1983. Slip instability and state variable friction laws. Journal of Geophysical Research 88(B12):10,359–10,370, https://doi.org/​10.1029/JB088iB12p10359.
  64. Ruiz, S., M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, and J. Campos. 2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345:1,165–1,169, https://doi.org/10.1126/science.1256074.
  65. Sacks, I.S., S. Suyehiro, A.T. Linde, and J.A. Snoke. 1982. Stress redistribution and slow earthquakes. Tectonophysics 81(3–4):311–318, https://doi.org/​10.1016/0040-1951(82)90135-4.
  66. Saffer, D., L. McNeill, T. Byrne, E. Araki, S. Toczko, N. Eguchi, K. Takahashi, and the Expedition 319 Scientists. 2010. Proceedings of the Integrated Ocean Drilling Program, 319. Integrated Ocean Drilling Program Management International Inc., Tokyo, Japan.
  67. Saffer, D.M., and H.J. Tobin. 2011. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review of Earth and Planetary Sciences 39:157–186, https://doi.org/​10.1146/annurev-earth-040610-133408.
  68. Saffer, D.M., and L.M. Wallace. 2015. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nature Geoscience 8(8):594–600, https://doi.org/10.1038/ngeo2490.
  69. Saffer, D., A. Kopf, S. Toczko, and the Expedition 365 Scientists. 2017. NanTroSEIZE Stage 3: Shallow Megasplay Long-Term Borehole Monitoring System. Proceedings of the International Ocean Discovery Program, 365. College Station, TX, https://doi.org/10.14379/iodp.proc.365.2017.
  70. Saffer, D.M., L.M. Wallace, K. Petronotis, and the Expedition 375 Scientists. 2018. Expedition 375 Preliminary Report: Hikurangi Subduction Margin Coring and Observatories. International Ocean Discovery Program, https://doi.org/10.14379/​iodp.pr.375.2018.
  71. Sagiya, T. 2004. Interplate coupling in the Kanto District, Central Japan, and the Boso Peninsula silent earthquake in May 1996. Pure and Applied Geophysics 161(11–12):2,327–2,342, https://doi.org/​10.1007/s00024-004-2566-6.
  72. Saito, T., K. Ujiie, A. Tsutsumi, J. Kameda, and B. Shibazaki. 2013. Geological and frictional aspects of very-low-frequency earthquakes in an accretionary prism. Geophysical Research Letters 40(4):703–708, https://doi.org/10.1002/grl.50175.
  73. Sakaguchi, A., F. Chester, D. Curewitz, O. Fabbri, D. Goldsby, G. Kimura, C.F. Li, Y. Masaki, E.J. Screaton, A. Tsutsumi, and K. Ujiie. 2011. Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology 39(4):395–398, https://doi.org/10.1130/G31642.1.
  74. Satake, K. 1993. Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data. Journal of Geophysical Research 98(B3):4,553–4,565, https://doi.org/10.1029/92JB01553.
  75. Scholz, C.H. 1998. Earthquakes and friction laws. Nature 391:37–42, https://doi.org/10.1038/34097.
  76. Scholz, C.H. 2002. The Mechanics of Earthquakes and Faulting, 2nd ed. Cambridge University Press, New York, NY.
  77. Schwartz, S.Y., and J.M. Rokosky. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics 45(3), RG3004, https://doi.org/10.1029/2006RG000208.
  78. Scuderi, M.M., C. Marone, E. Tinti, G. Di Stefano, and C. Collettini. 2016. Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nature Geoscience 9:695–700, https://doi.org/​10.1038/ngeo2775.
  79. Shelly, D.R., G.C. Beroza, S. Ide, and S. Nakamula. 2006. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442(7099):188–191, https://doi.org/​10.1038/nature04931.
  80. Shelly, D.R., G.C. Beroza, and S. Ide. 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446(7133):305–307, https://doi.org/​10.1038/nature05666.
  81. Shipboard Scientific Party. 2001. Leg 190 summary. Pp. 1–87 in Proceedings of the Ocean Drilling Program, Initial Reports, vol. 190. G.F. Moore, A. Taira, A. Klaus, eds, Ocean Drilling Program, College Station, TX, https://doi.org/10.2973/​odp.proc.ir.190.101.2001.
  82. Solomon, E.A., M. Kastner, C.G. Wheat, H. Jannasch, G. Robertson, E.E. Davis, and J.D. Morris. 2009. Long-term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone. Earth and Planetary Science Letters 282(1–4):240–251, https://doi.org/10.1016/​j.epsl.2009.03.022.
  83. Song, T.-R.A., D.V. Helmberger, M.R. Brudzinski, R.W. Clayton, P. Davis, X. Pérez-Campos, and S.K. Singh. 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324(5926):502–506, https://doi.org/10.1126/science.1167595.
  84. Spinelli, G.A., Saffer, D.M., and M.B. Underwood. 2006. Hydrogeologic responses to three-​dimensional temperature variability, Costa Rica subduction margin. Journal of Geophysical Research 111(B4), https://doi.org/​10.1029/​2004JB003436.
  85. Sugioka, H., T. Okamoto, T. Nakamura, Y. Ishihara, A. Ito, K. Obana, M. Kinoshita, K. Nakahigashi, M. Shinohara, and Y. Fukao. 2012. Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience 5(6):414, https://doi.org/10.1038/ngeo1466.
  86. Tobin, H.J., and D.M. Saffer. 2009. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37(8):679–682, https://doi.org/10.1130/G25752A.1.
  87. Underwood, M.B. 2007. Sediment inputs to subduction zone: Why lithostratigraphy and clay mineralogy matter. Pp. 42–85 in The Seismogenic Zone of Subduction Thrust Faults. T.H. Dixon and J.C. Moore, eds, Columbia University Press, New York.
  88. Vallee, M., J.M. Nocquet, J. Battaglia, Y. Font, M. Segovia, M. Regnier, P. Mothes, P. Jarrin, D. Cisneros, S. Vaca, and H. Yepes. 2013. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. Journal of Geophysical Research 118(6):2,965–2,981, https://doi.org/​10.1002/jgrb.50216.
  89. Wallace, L.M., and J. Beavan. 2006. A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand. Geophysical Research Letters 33, L11301, https://doi.org/10.1029/2006GL026009.
  90. Wallace, L.M., and J. Beavan. 2010. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. Journal of Geophysical Research 115(B12), B12402, https://doi.org/10.1029/2010JB007717.
  91. Wallace, L.M., J. Beavan, S. Bannister, and C. Williams. 2012. Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin, New Zealand: Implications for processes that control slow slip event occurrence, duration, and migration. Journal of Geophysical Research 117, B11402, https://doi.org/10.1029/2012JB009489.
  92. Wallace, L.M., S.C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S.Y. Schwartz, and A.F. Sheehan. 2016. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 352(6286):701–704, https://doi.org/10.1126/science.aaf2349.
  93. Wang, K. 2004. Applying fundamental principles and mathematical models to understand processes and estimate parameters. Pp. 376–413 in Hydrogeology of the Oceanic Lithosphere. E.E. Davis and H. Elderfield, eds, Cambridge University Press, Cambridge.
  94. Yokota, Y., T. Ishikawa, S.I. Watanabe, T. Tashiro, and A. Asada. 2016. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 534(7607):374–377, https://doi.org/​10.1038/​nature17632.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.