{!— ALTMETRIC INDEX TAGS - MJF --}
Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 02

View Issue TOC
Volume 31, No. 2
Pages 88 - 99

Simulation and Analysis of Hurricane-Driven Extreme Wave Climate Under Two Ocean Warming Scenarios

Ben Timmermans Christina PatricolaMichael Wehner
Article Abstract

Ocean wave climate is an important area of research, particularly in the context of extremes driven by tropical cyclones (TC). We can now simulate global climate at resolutions sufficient to resolve TCs and for durations long enough to explore climatological changes. Both the devastating 2017 North Atlantic hurricane season and growing evidence for the connection between TC activity and increasing ocean temperature motivate investigation of possible future changes. We present two simulated 50-year global wave climate data sets under possible future warming scenarios characterized by +1.5°C and +2.0°C stabilized global mean temperatures that capture the effects of TCs. Differences in extreme wave climate between these possible scenarios and present-day conditions appear to be significant in many areas, particularly those affected by TCs. However, for computational feasibility, simulations of this kind rely on fixed sea surface temperatures, so we also investigate and elucidate effects from the lack of a dynamic ocean by simulating waves from a number of recent hurricanes and comparing output to observations. We conclude that atmosphere-only forcing is likely to result in an overestimate of extreme wind speeds and wave heights in TC-affected regions. More ensemble studies are needed to help elucidate detailed processes relevant to extreme wave climate, and important community projects such as the Coordinated Wave Climate Intercomparison Project (COWCLIP) should be supported.

Citation

Timmermans, B., C. Patricola, and M. Wehner. 2018. Simulation and analysis of hurricane-driven extreme wave climate under two ocean warming scenarios. Oceanography 31(2):88–99, https://doi.org/10.5670/oceanog.2018.218.

References

Aarnes, O.J., M. Reistad, Ø. Breivik, E. Bitner-Gregersen, L.I. Eide, O. Gramstad, A.K. Magnusson, B. Natvig, and E. Venem. 2017. Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic. Journal of Geophysical Research 122:3,394–3,403, https://doi.org/​10.1002/​2016JC012521.

Aguirre, C., J.A. Rutllant, and M. Falvey. 2017. Wind waves climatology of the southeast Pacific Ocean. International Journal of Climatology 37:4,288–4,301, https://doi.org/​10.1002/joc.5084.

Aijaz, S., M. Ghantous, A.V. Babanin, I. Ginis, B. Thomas, and G. Wake. 2017. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-​ocean-​wave modeling. Journal of Geophysical Research 122:3,939–3,963, https://doi.org/​10.1002/2016JC012219.

Babanin, A.V., and W.E. Rogers. 2014. Generation and limiters of rogue waves. International Journal of Ocean and Climate Systems 5:38–49, https://doi.org/​10.1260/​1759-3131.5.2.39.

Barnard, P.L., D. Hoover, D.M. Hubbard, A. Snyder, B.C. Ludka, J. Allan, G.M. Kaminsky, P. Rugggiero, T.W. Gallien, L. Gable, and others. 2017. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nature Communications 8:14365, https://doi.org/10.1038/ncomms14365.

Camus, P., I.J. Losada, C. Izaguirre, A. Espejo, M. Menéndez, and J. Pérez. 2017. Statistical wave climate projections for coastal impact assessments. Earth’s Future 5:918–933, https://doi.org/​10.1002/2017EF000609.

Camus, P., M. Menéndez, F.J. Méndez, C. Izaguirre, A. Espejo, V. Cánovas, J. Pérez, A. Rueda, I.J. Losada, and R. Medina. 2014. A weather-​type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research 119:7,389–7,405, https://doi.org/​10.1002/2014JC010141.

Casas-Prat, M., X. Wang, and N. Swart. 2018. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Modelling 123:66–85, https://doi.org/10.1016/​j.ocemod.2017.12.003.

Chen, S.S., and M. Curcic. 2016. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Modelling 103:161–176, https://doi.org/​10.1016/j.ocemod.2015.08.005.

Chen, Y., and X. Yu. 2017. Sensitivity of storm wave modeling to wind stress evaluation methods. Journal of Advances in Modeling Earth Systems 9:893–907, https://doi.org/​10.1002/​2016MS000850.

Chen, Y., F. Zhang, B.W. Green, and X. Yu. 2018. Impacts of ocean cooling and reduced wind drag on Hurricane Katrina (2005) based on numerical simulations. Monthly Weather Review 146:287–306, https://doi.org/10.1175/MWR-D-17-0170.1.

Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp., https://doi.org/​10.1007/978-1-4471-3675-0.

Davison, A., and R. Huser. 2015. Statistics of extremes. Annual Review of Statistics and Its Application 2:203–235, https://doi.org/10.1146/annurev-statistics-010814-020133.

Doble, M.J., and J.-R. Bidlot. 2013. Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modelling. Ocean Modelling 70:166–173, https://doi.org/10.1016/​j.ocemod.2013.05.012.

Duvat, V.K.E., A.K. Magnan, S. Etienne, C. Salmon, and C. Pignon-Mussaud. 2016. Assessing the impacts of and resilience to Tropical Cyclone Bejisa, Reunion Island (Indian Ocean). Natural Hazards 83:601–640, https://doi.org/10.1007/s11069-016-2338-5.

Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688, https://doi.org/10.1038/nature03906.

Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo. 2013. Influence of tropical tropopause layer cooling on Atlantic hurricane activity. Journal of Climate 26:2,288–2,301, https://doi.org/​10.1175/JCLI-D-12-00242.1.

Erikson, L., C. Hegermiller, P. Barnard, P. Ruggiero, and M. van Ormondt. 2015. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Modelling 96:171–185, https://doi.org/10.1016/​j.ocemod.2015.07.004.

Fan, Y., I. Ginis, and T. Hara. 2009. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. Journal of Physical Oceanography 39(4):1,019–1,034, https://doi.org/​10.1175/2008JPO4066.1.

Fan, Y., I.M. Held, S.-J. Lin, and X.L. Wang. 2013. Ocean warming effect on surface gravity wave climate change for the end of the twenty-first century. Journal of Climate 26:6,046–6,066, https://doi.org/​10.1175/JCLI-D-12-00410.1.

Fan, Y., and W.E. Rogers. 2016. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling 102:1–13, https://doi.org/​10.1016/j.ocemod.2016.04.004.

Harley, M.D., I.L. Turner, M.A. Kinsela, J.H. Middleton, P.J. Mumford, K.D. Splinter, M.S. Phillips, J.A. Simmons, D.J. Hanslow, and A.D. Short. 2017. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Nature Scientific Reports 7:6033, https://doi.org/10.1038/s41598-017-05792-1.

Hemer, M.A., Y. Fan, N. Mori, A. Semedo, and X.L. Wang. 2013a. Projected changes in wave climate from a multi-model ensemble. Nature Climate Change 3:471–476, https://doi.org/10.1038/nclimate1791.

Hemer, M.A., J. Katzfey, and C.E. Trenham. 2013b. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modelling 70:221–245, https://doi.org/10.1016/j.ocemod.2012.09.008.

Hemer, M.A., X.L. Wang, R. Weisse, and V.R. Swail. 2012. Advancing wind-waves climate science: The COWCLIP project. Bulletin of the American Meteorological Society 93(6)791–796, https://doi.org/​10.1175/​BAMS-D-11-00184.1.

Hemer, M.A., S. Zieger, T. Durrant, J. O’Grady, R.K. Hoeke, K.L. McInnes, and U. Rosebrock. 2017. A revised assessment of Australia’s national wave energy resource. Renewable Energy 114(Part A):85–107, https://doi.org/10.1016/​j.renene.2016.08.039.

Hoeke, R.K., K.L. McInnes, and J.G. O’Grady. 2015. Wind and wave setup contributions to extreme sea levels at a tropical high island: A stochastic cyclone simulation study for Apia, Samoa. Journal of Marine Science and Engineering 3:1,117–1,135, https://doi.org/​10.3390/jmse3031117.

Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang. 2015. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nature Communications 6:7188, https://doi.org/​10.1038/ncomms8188.

Hurrell, J.W., J.J. Hack, D. Shea, J.M. Caron, and J. Rosinski. 2008. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. Journal of Climate 21:5,145–5,153, https://doi.org/​10.1175/​2008JCLI2292.1.

Hurrell, J.W., M.M. Holland, P.R. Gent, S. Ghan, J.E. Kay, P.J. Kushner, J.-F. Lamarque, W.G. Large, D. Lawrence, K. Lindsay, and others 2013. The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society 94:1,339–1,360, https://doi.org/​10.1175/​BAMS-D-12-00121.1.

IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C.B Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White, eds, Cambridge University Press, Cambridge, UK, and New York, NY, USA, 1,132 pp.

Izaguirre, C., F.J. Méndez, M. Menéndez, and I.J. Losada. 2011. Global extreme wave height variability based on satellite data. Geophysical Research Letters 38(10), https://doi.org/​10.1029/​2011GL047302.

Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P.A.E.M. Janssen. 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

Li, H., and R.L. Sriver. 2018. Tropical cyclone activity in the high-resolution Community Earth System Model and the impact of ocean coupling. Journal of Advances in Modeling Earth Systems 10:165–186, https://doi.org/10.1002/2017MS001199.

Lin, I.-I., I.-F. Pun, and C.-C. Lien. 2014. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters 41:8,547–8,553, https://doi.org/10.1002/2014GL061281.

Mackay, E.B., A.S. Bahaj, and P.G. Challenor. 2010. Uncertainty in wave energy resource assessment: Part 1. Historic data. Renewable Energy 35:1,792–1,808, https://doi.org/10.1016/​j.renene.2009.10.026.

Masselink, G., B. Castelle, T. Scott, G. Dodet, S. Suanez, D. Jackson, and F. Floc’h. 2016. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters 43:2,135–2,143, https://doi.org/10.1002/2015GL067492.

Massom, R.A., T.A. Scambos, L.G. Bennetts, P. Reid, V.A. Squire, and S.E. Stammerjohn. 2018. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558:383–389, https://doi.org/​10.1038/s41586-018-0212-1.

Méndez, F.J., M. Menéndez, A. Luceno, and I.J. Losada. 2006. Estimation of the long-term variability of extreme significant wave height using a time-dependent peak over threshold (POT) model. Journal of Geophysical Research 111(C7), https://doi.org/​10.1029/​2005JC003344.

Mitchell, D., K. AchutaRao, M. Allen, I. Bethke, U. Beyerle, A. Ciavarella, P.M. Forster, J. Fuglestvedt, N. Gillett, K. Haustein, and others. 2017. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geoscientific Model Development 10:571–583, https://doi.org/10.5194/gmd-10-571-2017.

Mizuta, R., A. Murata, M. Ishii, H. Shiogama, K. Hibino, N. Mori, O. Arakawa, Y. Imada, K. Yoshida, T. Aoyagi, and others. 2017. Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bulletin of the American Meteorological Society 98(7):1,383–1,398, https://doi.org/10.1175/BAMS-D-16-0099.1.

Moon, I.-J., I. Ginis, T. Hara, H.L. Tolman, C.W. Wright, and E.J. Walsh. 2003. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography 33:1,680–1,706, https://doi.org/​10.1175/2410.1.

Munich RE. 2018. Natural catastrophe review: Series of hurricanes makes 2017 year of highest insured losses ever. Press release, January 4, 2018, https://www.munichre.com/en/media-relations/​publications/press-releases/2018/2018-01-04-press-release/index.html.

Murakami, H., R. Mizuta, and E. Shindo. 2012. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dynamics 39:2,569–2,584, https://doi.org/10.1007/s00382-011-1223-x.

Murakami, H., G.A. Vecchi, T.L. Delworth, A.T. Wittenberg, S. Underwood, R. Gudgel, X. Yang, L. Jia, F. Zeng, K. Paffendorf, and W. Zhang. 2017. Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. Journal of Climate 30:243–264, https://doi.org/10.1175/JCLI-D-16-0424.1.

Murakami, H., G.A. Vecchi, S. Underwood, T.L. Delworth, A.T. Wittenberg, W.G. Anderson, J.-H. Chen, R.G. Gudgel, L.M. Harris, S.-J. Lin, and F. Zeng. 2015. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. Journal of Climate 28:9,058–9,079, https://doi.org/10.1175/JCLI-D-15-0216.1.

NOAA NCEI (National Centers for Environmental Information). 2018. U.S. Billion-Dollar Weather and Climate Disasters, https://www.ncdc.noaa.gov/billions/.

Patricola, C.M., P. Chang, and R. Saravanan. 2016. Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nature Geoscience 9:155–160, https://doi.org/​10.1038/NGEO2624.

Patricola, C.M., R. Saravanan, and P. Chang. 2014. The Impact of the El Niño-Southern Oscillation and Atlantic Meridional Mode on seasonal Atlantic tropical cyclone activity. Journal of Climate 27:5,311–5,328, https://doi.org/10.1175/JCLI-D-13-00687.1.

Patricola, C., and M. Wehner. In press. Anthropogenic influences on major tropical cyclone events. Nature.

Perez, J., M. Menéndez, P. Camus, F.J. Méndez, and I.J. Losada. 2015. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Modelling 96:161–170, https://doi.org/​10.1016/​j.ocemod.2015.06.001.

Risser, M.D., and M.F. Wehner. 2017. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophysical Research Letters 44(2):12,457–12,464, https://doi.org/10.1002/2017GL075888.

Ruggiero, P., P.D. Komar, and J.C. Allan. 2010. Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coastal Engineering 57:539–552, https://doi.org/10.1016/j.coastaleng.2009.12.005.

Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and S. Glenn. 2016. Hurricane Irene sensitivity to stratified coastal ocean cooling. Monthly Weather Review 144:3,507–3,530, https://doi.org/10.1175/MWR-D-15-0452.1.

Shimura, T., N. Mori, and M.A. Hemer. 2016. Variability and future decreases in winter wave heights in the Western North Pacific. Geophysical Research Letters 43:2,716–2,722, https://doi.org/​10.1002/2016GL067924.

Shimura, T., N. Mori, and M.A. Hemer. 2017. Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific. Climate Dynamics 49:1,449–1,462, https://doi.org/10.1007/s00382-016-3390-2.

Shimura, T., N. Mori, and H. Mase. 2015. Future projections of extreme ocean wave climates and the relation to tropical cyclones: Ensemble experiments of MRI-AGCM3.2H. Journal of Climate 28:9,838–9,856, https://doi.org/10.1175/JCLI-D-14-00711.1.

Shope, J.B., C.D. Storlazzi, L.H. Erikson, and C.A. Hegermiller. 2016. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability. Global and Planetary Change 141:25–38, https://doi.org/10.1016/​j.gloplacha.2016.03.009.

Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, and J.G. Powers. 2008. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR, 125 pp., https://doi.org/​10.5065/D68S4MVH.

Sobel, A.H., S.J. Camargo, T.M. Hall, C.-Y. Lee, M.K. Tippett, and A.A. Wing. 2016. Human influence on tropical cyclone intensity. Science 353:242–246, https://doi.org/10.1126/​science.aaf6574.

Sriver, R.L. 2016. Observational evidence supports the role of tropical cyclones in regulating climate. Proceedings of the National Academy of Sciences of the United States of America 38:15,173–15,174, https://doi.org/10.1073/pnas.1314721110.

Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93:485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

Timmermans, B., D. Stone, M. Wehner, and H. Krishnan. 2017. Impact of tropical cyclones on modeled extreme wind-wave climate. Geophysical Research Letters 44:1,393–1,401, https://doi.org/​10.1002/2016GL071681.

Tolman, H.L., and the WAVEWATCH III Development Group. 2014. User Manual and System Documentation of WAVEWATCH III, version 4.18. Environmental Modeling Center Marine Modeling and Analysis Branch, National Oceanic and Atmospheric Administration, 282 pp. plus appendices.

Vecchi, G.A., and B.J. Soden. 2007a. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1,066–1,071, https://doi.org/10.1038/nature06423.

Vecchi, G.A., and B.J. Soden. 2007b. Increased tropical Atlantic wind shear in model projections of global warming. Geophysical Research Letters 34(8), https://doi.org/​10.1029/​2006GL028905.

Wang, D.W., D.A. Mitchell, W.J. Teague, E. Jarosz, and M.S. Hulbert. 2005. Extreme waves under Hurricane Ivan. Science 309:896, https://doi.org/​10.1126/science.1112509.

Wang, X.L., Y. Feng, and V.R. Swail. 2014. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophysical Research Letters 41:1,026–1,034, https://doi.org/​10.1002/2013GL058650.

Wang, X.L., A. Semedo, M. Hemer, M. Dobrynin, and COWCLIP contributors. 2016. Report of the 2016 Meeting for the WCRP-JCOMM Coordinated Ocean Wave Climate Project (COWCLIP). Technical Report, Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM), 35 pp.

Wang, X.L., and V.R. Swail. 2006. Climate change signal and uncertainty in projections of ocean wave heights. Climate Dynamics 26:109–126, https://doi.org/​10.1007/s00382-005-0080-x.

Wehner, M., Prabhat, K.A. Reed, D. Stone, W.D. Collins, and J. Bacmeister. 2015. Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR hurricane working group idealized configurations. Journal of Climate 28:3,905–3,925, https://doi.org/10.1175/JCLI-D-14-00311.1.

Young, I. 1999. Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology 19:931–950, https://doi.org/​10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

Young, I.R., J. Vinoth, S. Zieger, and A.V. Babanin. 2012. Investigation of trends in extreme value wave height and wind speed. Journal of Geophysical Research 117(C11), https://doi.org/​10.1029/2011JC007753.

Zambon, J.B., R. He, and J.C. Warner. 2014. Investigation of Hurricane Ivan using the coupled ocean-​atmosphere-​wave-​sediment transport (COASWT) model. Ocean Dynamics 64:1,535–1,554, https://doi.org/10.1007/s10236-014-0777-7.

Zhang, W., G.A. Vecchi, H. Murakami, T. Delworth, A.T. Wittenberg, A. Rosati, S. Underwood, W. Anderson, L. Harris, R. Gudgel, and others. 2016. Improved simulation of tropical cyclone responses to ENSO in the Western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. Journal of Climate 29:1,391–1,415, https://doi.org/​10.1175/​JCLI-D-15-0475.1.

Zuidema, P., P. Chang, B. Medeiros, B.P. Kirtman, R. Mechoso, E.K. Schneider, T. Toniazzo, I. Richter, R.J. Small, K. Bellomo, and others. 2016. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR eastern tropical oceans synthesis working group. Bulletin of the American Meteorological Society 97(12):2,305–2,327, https://doi.org/10.1175/BAMS-D-15-00274.1.