Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 03

View Issue TOC
Volume 31, No. 3
Pages 59 - 67


Short-Term Predictions of Oceanic Drift

Kai H. Christensen Øyvind BreivikKnut-Frode DagestadJohannes RöhrsBrian Ward
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

We discuss oceanic drift as relevant to applications in operational oceanography using examples from recent field experiments to highlight some of the challenges in modeling drift trajectories. Short-term predictions are important in time-​critical operations, for example, for oil spill mitigation; hence, it is important that the transient response of the upper ocean to atmospheric forcing is modeled correctly. We emphasize the impact of surface waves and discuss the coupling between waves and mean flow in some detail. Because many objects of interest (e.g., person in water, oil spills) are in the wave zone, a better understanding of the details of the dynamics at the air-sea interface is needed. A clear separation of the forcing on such objects due to wind, waves, and ocean currents is needed in drift models, both to reduce dependence on empirical formulae and to make better use of drift data collected in field experiments.


Christensen, K.H., Ø. Breivik, K.-F. Dagestad, J. Röhrs, and B. Ward. 2018. Short-term predictions of oceanic drift. Oceanography 31(3):59–67, https://doi.org/10.5670/oceanog.2018.310.


Alford, M.H., J.A. MacKinnon, H.L. Simmons, and J.D. Nash. 2016. Near-inertial internal gravity waves in the ocean. Annual Review of Marine Science 8:95–123, https://doi.org/10.1146/annurev-marine-010814-015746.

Ardhuin, F., N. Rascle, and K.A. Belibassakis. 2008. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20:35–60, https://doi.org/10.1016/​j.ocemod.2007.07.001.

Belcher, S.E., A.L.M. Grant, K.E. Hanley, B. Fox-Kemper, L. Van Roekel, P.P. Sullivan, W.G. Large, A. Brown, A. Hines, D. Calvert, and others. 2012. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophysical Research Letters 39(18), https://doi.org/​10.1029/​2012GL052932.

Breivik, Ø., and A.A. Allen. 2008. An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems 69(1–2):99–113, https://doi.org/10.1016/​j.jmarsys.2007.02.010.

Breivik, Ø., A.A. Allen, C. Maisondieu, and M. Olagnon. 2013. Advances in search and rescue at sea. Ocean Dynamics 63(1):83–88, https://doi.org/​10.1007/s10236-012-0581-1.

Breivik, Ø., A.A. Allen, M. Maisondieu, J.-C. Roth, and B. Forest. 2012. The leeway of shipping containers at different immersion levels. Ocean Dynamics 62:741–752, https://doi.org/10.1007/s10236-012-0522-z.

Breivik, Ø., J.-R. Bidlot, and P.A.E.M. Janssen. 2016. A Stokes drift approximation based on the Phillips spectrum. Ocean Modelling 100:49–56, https://doi.org/​10.1016/j.ocemod.2016.01.005.

Breivik, Ø., P.A.E. Janssen, and J.-R. Bidlot. 2014. Approximate Stokes drift profiles in deep water. Journal of Physical Oceanography 44:2,433–2,445, https://doi.org/​10.1175/​JPO-D-14-0020.1.

Bruserud, K., S. Haver, and D. Myrhaug. 2018. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea. Ocean Dynamics 68:645–661, https://doi.org/​10.1007/s10236-018-1150-z.

Cavaleri, L., S. Abdalla, A. Benetazzo, L. Bertotti, J.-R. Bidot, Ø. Breivik, S. Carniel, R.E. Jensen, J. Portilla-Yandun, W.E. Rogers, and others. 2018. Wave modelling in coastal and inner seas. Progress in Oceanography, https://doi.org/10.1016/​j.pocean.2018.03.010.

Chen, S., J.A. Polton, J. Hu, and J. Xing. 2015. Local inertial oscillations in the surface ocean generated by time-varying winds. Ocean Dynamics 65:1,633–1,641, https://doi.org/10.1007/s10236-015-0899-6.

Christensen, K.H., and E. Terrile. 2009. Drift and deformation of oil slicks due to surface waves. Journal of Fluid Mechanics 620:313–332, https://doi.org/10.1017/S0022112008004606.

Constantin, A. 2006. The trajectories of particles in Stokes waves. Inventiones Mathematicae 166:523–535, https://doi.org/​10.1007/​s00222-006-0002-5.

Constantin, A. 2012. An exact solution for equatorially trapped waves. Journal of Geophysical Research 117, C05029, https://doi.org/​10.1029/​2012JC007879.

Constantin, A., and S.G. Monismith. 2017. Gerstner waves in the presence of mean currents and rotation. Journal of Fluid Mechanics 820:511–528, https://doi.org/10.1017/jfm.2017.223.

Constantin, A., and W. Strauss. 2010. Pressure beneath a Stokes wave. Communications on Pure and Applied Mathematics 63:533–557, https://doi.org/​10.1002/cpa.20299.

Craig, P.D., and M.L. Banner. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography 24:2,546–2,559, https://doi.org/​10.1175/​1520-0485(1994)024​<2546:MWETIT>​2.0.CO;2.

Craik, A.D. 2004. The origins of water wave theory. Annual Review of Fluid Mechanics 36:1–28,

Cronin, M.F., and W.S. Kessler. 2009. Near-surface shear flow in the tropical Pacific cold tongue front. Journal of Physical Oceanography 39:1,200–1,215, https://doi.org/10.1175/2008JPO4064.1.

Cronin, M.F., and T. Tozuka. 2016. Steady state ocean response to wind forcing in extratropical frontal regions. Scientific Reports 6, 28842, https://doi.org/​10.1038/srep28842.

Dagestad, K.-F., J. Röhrs, Ø. Breivik, and B. Aadlandsvik. 2018. OpenDrift v1.0: A generic framework for trajectory modeling. Geoscientific Model Development 11:1,405–1,420, https://doi.org/​10.5194/​gmd-11-1405-2018.

Davidson, F.J.M., A. Allen, G.B. Brassington, Ø. Breivik, P. Daniel, M. Kamachi, S. Sato, B. King, F. Lefevre, M. Sutton, and H. Kaneko. 2009. Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography 22(3):176–181, https://doi.org/10.5670/oceanog.2009.76.

de Boyer Montegut, C., G. Madec, A.S. Fischer, A. Lazar, and D. Ludicone. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research 109, C12003, https://doi.org/​10.1029/​2004JC002378.

Eide, M.S., Ø. Endresen, Ø. Breivik, O.W. Brude, I.H. Ellingsen, K. Røang, J. Hauge, and P.O. Brett. 2007. Prevention of oil spill from shipping by modelling of dynamic risk. Marine Pollution Bulletin 54:1,619–1,633, https://doi.org/10.1016/​j.marpolbul.2007.06.013.

Ekman, V.W. 1905. On the influence of the Earth’s rotation on ocean currents. Arkiv för matematik, astronomi och fysik 2:1–52.

Elliott, A.J., N. Hurford, and C.J. Penn. 1986. Shear diffusion and the spread of oil in the surface layers of the North Sea. Deutsche Hydrografische Zeitschrift 39:113–137, https://doi.org/10.1007/BF02408134.

Esters, L., Ø. Breivik, S. Landwehr, G.S.A. ten Doeschate, K.H. Christensen, J.-R. Bidlot, and B. Ward. 2018. Turbulence scaling comparisons in the ocean surface boundary layer. Journal of Geophysical Research 123:2,172–2,191, https://doi.org/​10.1002/​2017JC013525.

Fan, Y., and S.M. Griffies. 2014. Impacts of parameterized Langmuir turbulence and non-breaking wave mixing in global climate simulations. Journal of Climate 27:4,752–4,775, https://doi.org/10.1175/JCLI-D-13-00583.1.

Gemmrich, J.R., T.D. Mudge, and V.D. Polonichko. 1994. On the energy input from wind to surface waves. Journal of Physical Oceanography 24:2,413–2,417, https://doi.org/​10.1175/​1520-0485(1994)024​<2413:OTEIFW>​2.0.CO;2.

Gonella, J. 1972. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep Sea Research and Oceanographic Abstracts 19:833–846, https://doi.org/​10.1016/​0011-7471(72)90002-2.

Harcourt, R.R. 2013. A second-moment closure model of Langmuir turbulence. Journal of Physical Oceanography 43:673–697, https://doi.org/10.1175/JPO-D-12-0105.1.

Harcourt, R.R. 2015. An improved second-moment closure model of Langmuir turbulence. Journal of Physical Oceanography 45:84–103, https://doi.org/​10.1175/JPO-D-14-0046.1.

Harcourt, R.R., and E.A. D’Asaro. 2008. Large-eddy simulation of Langmuir turbulence in pure wind seas. Journal of Physical Oceanography 38:1,542–1,562, https://doi.org/​10.1175/2007JPO3842.1.

Hasselmann, K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics 1:463–502, https://doi.org/​10.1080/03091927009365783.

Henry, D. 2006. The trajectories of particles in deep-water Stokes waves. International Mathematics Research Notices, 23405, https://doi.org/​10.1155/IMRN/2006/23405.

Henry, D. 2016. Equatorially trapped nonlinear water waves in a β-plane approximation with centripetal forces. Journal of Fluid Mechanics 804, R1, https://doi.org/10.1017/jfm.2016.544.

Henry, D. 2018. On three-dimensional Gerstner-like equatorial water waves. Philosphical Transactions of the Royal Society A 376, 20170088, https://doi.org/​10.1098/​rsta.2017.0088.

Holte, J., and L. Talley. 2009. A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation. Journal of Atmospheric and Oceanic Technology 26:1,920–1,939, https://doi.org/​10.1175/​2009JTECHO543.1.

Janssen, P.A.E.M. 1989. Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography 19:745–754, https://doi.org/10.1175/​1520-0485(1989)019​<0745:WISATD>2.0.CO;2.

Janssen, P.A.E.M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography 21:1,631–1,642, https://doi.org/10.1175/1520-0485(1991)021<1631:​QLTOWW>2.0.CO;2.

Janssen, P.A.E.M. 2012. Ocean wave effects on the daily cycle in SST. Journal of Geophysical Research 117(C11), https://doi.org/​10.1029/​2012JC007943.

Jenkins, A.D. 1989. The use of a wave prediction model for driving a near-surface current model. Deutsche Hydrografische Zeitschrift 42:133–149, https://doi.org/10.1007/BF02226291.

Jones, C., K.-F. Dagestad, Ø. Breivik, B. Holt, J. Röhrs, K.H. Christensen, M. Espeseth, C. Brekke, and S. Skrunes. 2016. Measurement and modeling of oil slick transport. Journal of Geophysical Research 121:7,759–7,775, https://doi.org/​10.1002/​2016JC012113.

Kenyon, K.E. 1969. Stokes drift for random gravity waves. Journal of Geophysical Research 74(28):6,991–6,994, https://doi.org/​10.1029/​JC074i028p06991.

Kim, S.Y., A.L. Kurapov, and P.M. Kosro. 2015. Influence of varying upper ocean stratification on coastal near-inertial currents. Journal of Geophysical Research 120:8,504–8,527, https://doi.org/​10.1002/​2015JC011153.

Kukulka, T., G. Proskurowski, S. Morét-Ferguson, D.W. Meyer, and K.L. Law. 2012. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophysical Research Letters 39(7), https://doi.org/10.1029/2012GL051116.

Laxague, N.J.M., T.M. Özgökmen, B.K. Haus, G. Novelli, A. Shcherbina, P. Sutherland, C.M. Guigand, B. Lund, S. Mehta, M. Alday, and others. 2018. Observations of near-surface current shear help describe oceanic oil and plastic transport. Geophysical Research Letters 44:245–249, https://doi.org/10.1002/2017GL075891.

Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics 32:363–403, https://doi.org/​10.1029/​94RG01872.

Li, M., C. Garrett, and E. Skyllingstad. 2005. A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I 52:259–278, https://doi.org/10.1016/​j.dsr.2004.09.004.

Li, Q., B. Fox-Kemper, Ø. Breivik, and A. Webb. 2017. Statistical models of global Langmuir mixing. Ocean Modelling 113:95–114, https://doi.org/​10.1016/j.ocemod.2017.03.016.

Li, Q., A. Webb, B. Fox-Kemper, A. Craig, A. Danabasoglu, W.G. Large, and M. Vertenstein. 2016. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling 103:145–160, https://doi.org/10.1016/​j.ocemod.2015.07.020.

Longuet-Higgins, M.S. 1953. Mass transport in water waves. Philosphical Transactions of the Royal Society A 245:535–581, https://doi.org/10.1098/rsta.1953.0006.

Longuet-Higgins, M.S. 1969. A nonlinear mechanism for the generation of sea waves. Proceedings of the Royal Society A 311:371–389, https://doi.org/​10.1098/rspa.1969.0123.

Longuet-Higgins, M.S., and R.W. Stewart. 1964. Radiation stresses in water waves: A physical discussion, with applications. Deep Sea Research and Oceanographic Abstracts 11:529–562, https://doi.org/​10.1016/0011-7471(64)90001-4.

Madec, G., and the NEMO team. 2016. NEMO Ocean Engine. Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace No. 27, France, 396 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

McWilliams, J.C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A 472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

McWilliams, J.C., and J.M. Restrepo. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography 29:2,523–2,540, https://doi.org/​10.1175/​1520-0485(1999)029​<2523:TWDOC>​2.0.CO;2.

McWilliams, J.C., and P.P. Sullivan. 2000. Vertical mixing by Langmuir circulations. Spill Science & Technology Bulletin 6:225–237, https://doi.org/​10.1016/S1353-2561(01)00041-X.

Mellor, G.L., and T. Yamada. 1982. Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics 20:851–875, https://doi.org/10.1029/RG020i004p00851.

Mogensen, K.S., L. Magnusson, and J.-R. Bidlot. 2017. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. Journal of Geophysical Research 122:4,392–4,412, https://doi.org/​10.1002/​2017JC012753.

Noh, Y., H. Ok, E. Lee, T. Toyoda, and N. Hirose. 2016. Parameterization of Langmuir circulation in the ocean mixed layer model using LES and its application to the OGCM. Journal of Physical Oceanography 46:57–78, https://doi.org/10.1175/JPO-D-14-0137.1.

Pollard, R.T. 1970. Surface waves with rotation: An exact solution. Journal of Geophysical Research 75:5,895–5,898, https://doi.org/10.1029/JC075i030p05895.

Pollard, R.T., and R.C. Millard. 1970. Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Research and Oceanographic Abstracts 17:813–821, https://doi.org/​10.1016/​0011-7471(70)90043-4.

Polton, J.A., D.M. Lewis, and S.E. Belcher. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. Journal of Physical Oceanography 35:444–457, https://doi.org/10.1175/JPO2701.1.

Reistad, M., Ø. Breivik, H. Haakenstad, O.J. Aarnes. B.R. Furevik, and J.-R. Bidlot. 2011. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. Journal of Geophysical Research 116(C5), https://doi.org/​10.1029/2010JC006402.

Röhrs, J., and K.H. Christensen. 2015. Drift in the uppermost part of the ocean. Geophysical Research Letters 42:10,349–10,356, https://doi.org/​10.1002/2015GL066733.

Röhrs, J., K.H. Christensen, L.R. Hole, G. Broström, M. Drivdal, and S. Sundby. 2012. Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dynamics 62:1,519–1,533, https://doi.org/10.1007/s10236-012-0576-y.

Röhrs, J., K.H. Christensen, F. Vikebø, S. Sundby, Ø. Saetra, and G. Broström. 2014. Wave-induced transport and vertical mixing of pelagic eggs and larvae. Limnology and Oceanography 59:1,213–1,227, https://doi.org/​10.4319/lo.2014.59.4.1213.

Saetra, Ø., J. Albretsen, and P.A. Janssen. 2007. Sea-state-dependent momentum fluxes for ocean modeling. Journal of Physical Oceanography 37:2,714–2,725, https://doi.org/​10.1175/2007JPO3582.1.

Shchepetkin, A.F., and J.C. McWilliams. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling 9:347–404, https://doi.org/10.1016/​j.ocemod.2004.08.002.

Sheldon, L., and A. Czaja. 2014. Seasonal and interannual variability of an index of deep atmospheric convection over western boundary currents. Quarterly Journal of the Royal Meteorological Society 140(678):22–30, https://doi.org/10.1002/qj.2103.

Shrira, V.I., and P. Forget. 2015. On the nature of near-inertial oscillations in the uppermost part of the ocean and a possible route toward HF radar probing of stratification. Journal of Physical Oceanography 45:2,660–2,678, https://doi.org/​10.1175/JPO-D-14-0247.1.

Simonsen, M., Ø. Saetra, P.E. Isachsen, O.C. Lind, H.K. Skjerdal, B. Salbu, H.E. Heidal, and J.P. Gwynn. 2017. The impact of tidal and mesoscale eddy advection on the long term dispersion of 99Tc from Sellafield. Journal of Environmental Radioactivity 177:100–112, https://doi.org/10.1016/​j.jenvrad.2017.06.002.

Smyth, W.D., E.D. Skyllingstad, G.B. Crawford, and H. Wijesekera. 2002. Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dynamics 52:104–115, https://doi.org/​10.1007/​s10236-002-0012-9.

Spencer, L.J., S.F. DiMarco, Z. Wang, J.J. Kuehl, and D.A. Brooks. 2016. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac. Journal of Geophysical Research 121:7,619–7,649, https://doi.org/​10.1002/​2015JC011560.

Stokes, G.G. 1847. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society 8(441)197–229.

Strand, K.O., S. Sundby, J. Albretsen, and F.B. Vikebø. 2017. The Northeast Greenland shelf as a potential habitat for the Northeast Arctic cod. Frontiers in Marine Science 4:304, https://doi.org/10.3389/fmars.2017.00304.

Takaya, Y., J.-R. Bidlot, A. Beljaars, and P.A.E.M. Janssen. 2010. Refinements to a prognostic scheme of skin sea surface temperature. Journal of Geophysical Research 115(C6), https://doi.org/10.1029/2009JC005985.

Ursell, F., and G. Deacon. 1950. On the theoretical form of ocean swell on a rotating Earth. Geophysical Journal International 6:1–8, https://doi.org/​10.1111/​j.1365-246X.1950.tb02968.x.

Van den Bremer, T., and Ø. Breivik. 2018. Stokes drift. Philosphical Transactions of the Royal Society A 376, https://doi.org/10.1098/rsta.2017.0104.

Van Roekel, L.P., B. Fox-Kemper, P.P. Sullivan, P.E. Hamlington, and S.R. Haney. 2012. The form and orientation of Langmuir cells for misaligned winds and waves. Journal of Geophysical Research 117(C5), https://doi.org/​10.1029/​2011JC007516.

Van Sebille, E., M.H. England, and G. Froyland. 2012. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environmental Research Letters 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040.

Van Sebille, E., S.M. Griffies, R. Abernathy, T.P. Adams, P. Berloff, A. Biastoch, B. Blanke, E.P. Chassignet, Y. Cheng, C.J. Cotter, and others. 2018. Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling 121:49–75, https://doi.org/​10.1016/j.ocemod.2017.11.008.

Wain, D.J., J. Lilly, A.H. Callaghan, I. Yashayaev, and B. Ward. 2015. A breaking internal wave in the surface ocean boundary layer. Journal of Geophysical Research 120:4,151–4,161, https://doi.org/​10.1002/​2014JC010416.

Walesby, K., J. Vialard, P. Minnett, A.H. Callaghan, and B. Ward. 2015. Observations indicative of rain-induced double diffusion in the ocean surface boundary layer. Geophysical Research Letters 42:3,963–3,972, https://doi.org/​10.1002/​2015GL063506.

Ward, B., T. Fristedt, A.H. Callaghan, G. Sutherland, X. Sanchez, J. Vialard, and A. ten Doeschate. 2014. The Air-Sea Interaction Profiler (ASIP): An autonomous upwardly-rising profiler for microstructure measurements in the upper ocean. Journal of Atmospheric and Oceanic Technology 31:2,246–2,267, https://doi.org/10.1175/JTECH-D-14-00010.1.

Weber, J.E. 2001. Virtual wave stress and mean drift in spatially damped surface waves. Journal of Geophysical Research 106:11,653–11,657, https://doi.org/​10.1029/1999JC000035.

Weber, J.E.H., G. Broström, and Ø. Saetra. 2006. Eulerian versus Lagrangian approaches to the wave-induced transport in the upper ocean. Journal of Physical Oceanography 36:2,106–2,118, https://doi.org/10.1175/JPO2951.1.

Wilkin, J., L. Rosenfeld, A. Allen, R. Baltes, A. Baptista, R. He, P. Hogan, A. Kurapov, A. Mehra, J. Quintrell, and others. 2017. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System. Journal of Operational Oceanography 10:115–126, https://doi.org/10.1080/​1755876X.2017.1322026.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.