Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 16 - 24

OpenAccess

Seasonal Variability of the Oceanic Circulation in the Gulf of San Jorge, Argentina

By Ricardo P. Matano  and Elbio D. Palma 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

This study uses a high-resolution model to characterize the seasonal variability of the oceanic circulation in the Gulf of San Jorge (Argentina). The time mean circulation is dominated by a cyclonic gyre bounded by a relatively strong coastal current and, on its offshore side, by the Patagonia Current. The gulf circulation varies significantly with season. Tidal mixing during the summer months generates baroclinic pressure gradients that allow development of a cyclonic gyre in the southern region. During winter, erosion of density gradients weakens the cyclonic tendency and a large anticyclonic gyre develops in the southern region. Atmospheric heat fluxes regulate the transition between summer and winter circulation patterns. Analysis of process-oriented experiments indicates that summer circulation is mainly driven by the interaction between tides and stratification while winter circulation is mainly driven by wind forcing. The mass exchanges between the gulf and the open shelf peak during the summer due to a larger onshore penetration of the Patagonia Current. During winter, these exchanges are very weak and remain largely confined to the northern portion of the gulf.

Citation

Matano, R.P., and E.D. Palma. 2018. Seasonal variability of the oceanic circulation in the Gulf of San Jorge, Argentina. Oceanography 31(4):16–24, https://doi.org/​10.5670/oceanog.2018.402.

References
    Barnier, B. 1998. Forcing the ocean. Pp. 45–80 in Ocean Modelling and Parameterization. E.P. Chassingnet and J. Verron, eds, Kluwer Academic Publishers, The Netherlands.
  1. Bogazzi, E., A. Baldoni, A. Rivas, P. Martos, R. Reta, J.M. Orensanz, M. Lasta, P. Dell’Arciprete, and F. Werner. 2005. Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fisheries and Oceanography 14:359–376, https://doi.org/​10.1111/​j.1365-2419.2005.00340.x.
  2. Brandhorst,W., and J.P. Castello. 1971. Evaluación de los recursos de anchoita (Engraulis Anchoita) frente a la Argentina y Uruguay: Parte I. Las condiciones oceanográficas, sinopsis del conocimiento actual sobre la anchoita y el plan para su evaluación. Proy. Des. Pesq. Ser., FAO, 29, 63 pp.
  3. Combes, V., and R.P. Matano. 2014. A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic. Journal of Geophysical Research Oceans 119:731–756, https://doi.org/​10.1002/​2013JC009498.
  4. Conkright, M.E., R.A. Locarnini, H.E. Garcia, T.D. OBrien, T.P. Boyer, C. Stephens, and J.I. Antonov. 2002. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures. National Oceanographic Data Center, Silver Spring, MD, CD-ROM Documentation, 17 pp.
  5. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, and others. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253–280, https://doi.org/​10.1038/​387253a0.
  6. Debreu, L., P. Marchesiello, P. Penven, and G. Cambon. 2012. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling 49:1–21, https://doi.org/​10.1016/​j.ocemod.2012.03.003.
  7. Egbert, G.D., A.F. Bennett, and M.G. Foreman. 1994. TOPEX/Poseidon tides estimated using a global inverse model. Journal of Geophysical Research 99:24,821–24,852, https://doi.org/​10.1029/94JC01894.
  8. Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M. Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.
  9. Glorioso, P.D., and R.A. Flather. 1995. A barotropic model of the currents off SE South America. Journal of Geophysical Research 100:13,427–13,440, https://doi.org/​10.1029/95JC00942.
  10. Hill, A.E. 1996. Spin-down and the dynamics of dense pool gyres in shallow seas. Journal of Marine Research 54(16):471–486, https://doi.org/​10.1357/0022240963213538.
  11. Hill, A.E., J. Brown, and L. Fernand. 1997. The summer gyre in the Western Irish Sea: Shelf sea paradigms and management implications. Estuarine, Coastal and Shelf Science 44A:83–95, https://doi.org/​10.1016/​S0272-7714(97)80010-8.
  12. Hu, D., M. Cui, Y. Li, and T. Qu. 1991. On the Yellow Sea cold water mass related circulation. Yellow Sea Research 4:79–88.
  13. Krock, B., C.M. Borel, F. Barrera, U. Tillmann, E. Fabro, G.O. Almandoz, M. Ferrairo, J.E. Garzón Cardona, B.P. Koch, C. Alonso, and others. 2015. Analysis of the hydrographic conditions and cyst beds in the San Jorge Gulf, Argentina, that favor dinoflagellate population development including toxigenic species and their toxins. Journal of Marine Systems 148:86–100, https://doi.org/10.1016/​j.jmarsys.2015.01.006.
  14. Large, W., J. McWilliams, and S. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Review of Geophysics 32(4):363–403, https://doi.org/​10.1029/​94RG01872.
  15. Lavin, M.F., R. Durazo, E. Palacios, M.L. Argote, and L. Carrillo.1997. Lagrangian observations of the circulation in the Northern Gulf of California. Journal of Physical Oceanography 27:2,298–2,305, https://doi.org/10.1175/1520-0485(1997)027​<2298:​LOOTCI>2.0.CO;2.
  16. Marchesiello, P., J.C. McWilliams, and A. Shchepetkin. 2001. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling 3:1–20, https://doi.org/10.1016/S1463-5003(00)00013-5.
  17. Palma, E.D., and R.P. Matano. 2012. A numerical study of the Magellan plume. Journal of Geophysical Research 117, C05041, https://doi.org/​10.1029/2011JC007750.
  18. Palma, E.D., R.P. Matano, and A.R. Piola. 2004a. A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. Journal of Geophysical Research Oceans 109, C08014, https://doi.org/​10.1029/​2004JC002315.
  19. Palma, E.D., R.P. Matano, and A.R. Piola. 2008. A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. Journal of Geophysical Research 113, C11010, https://doi.org/​10.1029/​2007JC004720.
  20. Palma, E.D., R.P. Matano, A.R. Piola, and L. Sitz. 2004b. A comparison of the circulation patterns over the Southwestern Atlantic driven by different wind stress climatologies. Geophysical Research Letters 31, L24303, https://doi.org/​10.1029/​2004GL021068.
  21. Park, M.J., and D.P. Wang. 1994. Tidal vorticity over isolated topographic features. Continental Shelf Research 14(13/14):1,583–1,599, https://doi.org/​10.1016/0278-4343(94)90091-4.
  22. Silwan, C.A. 2001. Geology of the Golfo San Jorge Basin, Argentina. Journal of Iberian Geology 27:123–157.
  23. Tonini, M.H., and E.D. Palma. 2017. Tidal dynamics on the North Patagonian Argentinean Gulfs. Estuarine, Coastal and Shelf Science 65:97–110, https://doi.org/​10.1016/​j.ecss.2017.02.026.
  24. Tonini, M.H., E.D. Palma, and A.R. Piola. 2013. A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Continental Shelf Research 65:97–110, https://doi.org/​10.1016/​j.csr.2013.06.011.
  25. Tonini, M.H., E.D. Palma, and A.L. Rivas. 2006. Modelo de alta resolución de los golfos norpatagónicos. Mecánica Computacional XXV:1,441–1,460.
  26. Xue, H., F. Chai, and N.R. Pettigrew. 2000. A model study of the seasonal circulation in the Gulf of Maine. Journal of Physical Oceanography 30:1,111–1,135, https://doi.org/​10.1175/​1520-0485(2000)030​<1111:AMSOTS>2.0.CO;2.
  27. Zimmerman, J.T.F. 1980. Vorticity transfer by tidal currents over an irregular topography. Journal of Marine Research 38:601–630.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.