Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 03

View Issue TOC
Volume 29, No. 3
Pages 136 - 149


Responses of Microbial Communities to Hydrocarbon Exposures

By Samantha B. Joye , Sara Kleindienst, Jack A. Gilbert , Kim M. Handley, Pamela Weisenhorn, Will A. Overholt, and Joel E. Kostka 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The responses of microbial communities to hydrocarbon exposures are complex and variable, driven to a large extent by the nature of hydrocarbon infusion, local environmental conditions, and factors that regulate microbial physiology (e.g., substrate and nutrient availability). Although present at low abundance in the ocean, hydrocarbon-degrading seed populations are widely distributed, and they respond rapidly to hydrocarbon inputs at natural and anthropogenic sources. Microbiomes from environments impacted by hydrocarbon discharge may appear similar at a higher taxonomic rank (e.g., genus level) but diverge at increasing phylogenetic resolution (e.g., sub-OTU [operational taxonomic unit] levels). Such subtle changes are detectable by computational methods such as oligotyping or by genome reconstruction from metagenomic sequence data. The ability to reconstruct these genomes, and to characterize their transcriptional activities in different environmental contexts through metatranscriptomic mapping, is revolutionizing our ability to understand the diverse and adaptable microbial communities in marine ecosystems. Our knowledge of the environmental factors that regulate microbial hydrocarbon degradation and the efficiency with which marine hydrocarbon-degrading microbial communities bioremediate hydrocarbon contamination is incomplete. Moreover, detailed baseline descriptions of naturally occurring hydrocarbon-degrading microbial communities and a more robust understanding of the factors that regulate their activity are needed.


Joye, S.B., S. Kleindienst, J.A. Gilbert, K.M. Handley, P. Weisenhorn, W.A. Overholt, and J.E. Kostka. 2016. Responses of microbial communities to hydrocarbon exposures. Oceanography 29(3):136–149, https://doi.org/10.5670/oceanog.2016.78.


Abbasian, F., R. Lockington, M. Megharaj, and R. Naidu. 2015. A review on the genetics of aliphatic and aromatic hydrocarbon degradation. Applied Biochemistry and Biotechnology 178:224–250, https://doi.org/​10.1007/s12010-015-1881-y.

Aeppli, C., C.A. Carmichael, R.K. Nelson, K.L. Lemkau, W.M. Graham, M.C. Redmond, D.L. Valentine, and C.M. Reddy. 2012. Oil weathering after the Deepwater Horizon disaster led to formation of oxygenated residues. Environmental Science & Technology 46:8,799–8,807, https://doi.org/​10.1021/es3015138.

Atlas, R.M., D.M. Stoeckel, S.A. Faith, A. Minard-Smith, J.R. Thorn, and M.J. Benotti. 2015. Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environmental Science & Technology 49(14):8,356–8,366, https://doi.org/10.1021/acs.est.5b00413.

Bagi, A., D.M. Pampanin, O.G. Brakstad, and R. Kommedal. 2013. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q 10 approach. Marine Environmental Research 89:83–90, https://doi.org/10.1016/​j.marenvres.2013.05.005.

Bookstaver, M., A. Bose, and A. Tripathi. 2015. Interaction of Alkanivorax borkumensis with a surfactant decorated oil-water interface. Langmuir 31(21):5,875–5,881, https://doi.org/​10.1021/acs.langmuir.5b00688

Brakstad, O.G., M. Throne-Holst, R. Netzer, D.M. Stoeckel, and R.M. Atlas. 2015. Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. Microbial Biotechnology 8(6):989–998, https://doi.org/​10.1111/1751-7915.12303

Brown-Peterson, N.J., M. Krasnec, R. Takeshita, C.N. Ryan, K.J. Griffitt, C. Lay, G.D. Mayer, K.M. Bayha, W.E. Hawkins, I. Lipton, and others. 2015. A multiple endpoint analysis of the effects of chronic exposure to sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated microbiomes. Aquatic Toxicology 165:197–209, https://doi.org/10.1016/​j.aquatox.2015.06.001.

Crespo-Medina, M., C.D. Meile, K.S. Hunter, V.J. Orphan, P. Tavormina, L.M. Nigro, J.J. Battles, A.R. Diercks, V. Asper, J.P. Chanton, and others. 2014. The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience 7:423–427, https://doi.org/10.1038/ngeo2156.

Dalyander, P.S., J.W. Long, N.G. Plant, and D.M. Thompson. 2014. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone. Marine Pollution Bulletin 80(1):200–209, https://doi.org/10.1016/​j.marpolbul.2014.01.004.

Edwards, B.R., C.M. Reddy, R. Camilli, C.A. Carmichael, K. Longnecker, and B.A.S. Van Mooy. 2011. Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico. Environmental Research Letters 6(3):035301, https://doi.org/10.1088/1748-9326/6/3/035301.

Eren, A.M., L. Maignien, W.J. Sul, L.G. Murphy, S.L. Grim, H.G. Morrison, and M.L. Sogin. 2013. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods in Ecology and Evolution 4:1,111–1,119, https://doi.org/10.1111/2041-210X.12114.

Feng, L., W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, Y. Tang, X. Liu, W. Han, X. Peng, R. Liu, and L. Wang. 2007. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America 104(13):5,602–5,607, https://doi.org/​10.1073/pnas.0609650104.

Foght, J. 2008. Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects. Journal of Molecular Microbiology and Biotechnology 15:93–120, https://doi.org/10.1159/000121324.

Fuchs, G., M. Boll, and J. Heider. 2011. Microbial degradation of aromatic compounds: From one strategy to four. Nature Reviews Microbiology 9(11):803–816, https://doi.org/​10.1038/nrmicro2652

Gibbons, S.M., J.G. Caporaso, M. Pirrung, D. Field, R. Knight, and J.A. Gilbert. 2013. Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences of the United States of America 110:4,651–4,655, https://doi.org/10.1073/pnas.1217767110.

Gilbert, J.A., and C.L. Dupont. 2011. Microbial metagenomics: Beyond the genome. Annual Review of Marine Science 3:347–371, https://doi.org/10.1146/annurev-marine-120709-142811.

Gilbert, J.A., and C. Henry. 2015. Predicting ecosystem emergent properties at multiple scales. Environmental Microbiology Reports 7:20–22, https://doi.org/10.1111/1758-2229.12258.

Gutierrez, T., D. Berry, T. Yang, S. Mishamandani, L. McKay, A. Teske, and M.D. Aiken. 2013. Role of bacterial exopolysaccharides (EPS) in the fate of oil released during the Deepwater Horizon oil spill. PLoS ONE, https://doi.org/10.1371/journal.pone.0067717.

Harwood, C.S., G. Burchhardt, H. Herrmann, and G. Fuchs. 1998. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews 22(5):439–458, https://doi.org/10.1111/j.1574-6976.1998.tb00380.x.

Hayworth, J.S., T.P. Clement, G.F. John, and F. Yin. 2015. Fate of Deepwater Horizon oil in Alabama’s beach system: Understanding physical evolution processes based on observational data. Marine Pollution Bulletin 90(1):95–105, https://doi.org/​10.1016/j.marpolbul.2014.11.016.

Hazen, T.C., E.A. Dubinsky, T.Z. DeSantis, G.L. Andersen, Y.M. Piceno, N. Singh, J.K. Jansson, A. Probst, S.E. Borglin, J.L. Fortney, and others. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208, https://doi.org/10.1126/science.1195979.

Head, I.M., D.M. Jones, and S.R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352, https://doi.org/10.1038/nature02134.

Head, I.M., D.M. Jones, and W.F.M. Roling. 2006. Marine microorganisms make a meal of oil. Nature Reviews Microbiology 4:173–182, https://doi.org/​10.1038/nrmicro1348.

Heider, J., and R. Rabus. 2008. Genomic insights in the anaerobic biodegradation of organic pollutants. Pp. 25–54 in Microbial Biodegradation: Genomics and Molecular Biology. E. Diaz, ed., Caister Academic Press. 

Hernández-López, E.L., L. Perezgasga, A. Huerta-Saquero, R. Mouriño-Pérez, and R. Vazquez-Duhalt. 2016. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environmental Science and Pollution Research 23:10,773–10,784, https://doi.org/​10.1007/s11356-016-6277-1.

Joye, S.B. 2015. Deepwater Horizon, 5 years on. Science 349(6248):592–593, https://doi.org/​10.1126/science.aab4133.

Joye, S.B., J.E. Kostka, and A.P. Teske. 2014. Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. BioScience 64(9):766–777, https://doi.org/​10.1093/biosci/biu121.

Kleindienst, S., J. Paul, and S.B. Joye. 2015c. Using dispersants following oil spills: impact on the composition and activity of microbial communities. Nature Reviews Microbiology 13:388–396, https://doi.org/10.1038/nrmicro3452.

Kleindienst, S., M. Seidel, K. Ziervogel, S. Grim, K. Loftis, S. Harrison, S.Y. Malkin, M.J. Perkins, J. Field, M.L. Sogin, and others. 2015b. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of America 112:14,900–14,905, https://doi.org/10.1073/pnas.1507380112.

Kleindienst, S., S. Grim, M. Sogin, A. Bracco, M. Crespo-Medina, and S.B. Joye. 2015a. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME Journal 10:400–415, https://doi.org/10.1038/ismej.2015.121.

Knight, R., J. Jansson, D. Field, N. Fierer, N. Desai, J. Fuhrman, P. Hugenholtz, F. Meyer, R. Stevens, M. Bailey, and others. 2012. Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 30(6):513–520, https://doi.org/10.1038/nbt.2235.

Koch, D.J., M.M. Chen, J.B. van Beilen, and F.H. Arnold. 2009. In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Applied and Environmental Microbiology 75(2):337–44, https://doi.org/​10.1128/AEM.01758-08.

Kostka, J.E., O. Prakash, W.A. Overholt, S.J. Green, G. Freyer, A. Canion, J. Delgardio, N. Norton, T.C. Hazen, and M. Huettel. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology 77(22):7,962–7,974, https://doi.org/10.1128/AEM.05402-11.

Ladino-Orjuela, G., E. Gomes, R. Silva, C. Salt, and J.R. Parsons. 2016. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. Reviews of Environmental Contamination and Toxicology 237:105–121, https://doi.org/​10.1007/978-3-319-23573-8_5.

Lavania, M., S. Cheema, P.M. Sarma, A.K. Mandal, and B. Lal. 2012. Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23(1):15–24, https://doi.org/10.1007/s10532-011-9482-0.

Leahy, J.G., and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54(3):305–315.

Lu, Z., Y. Deng, J.D. Van Nostrand, Z. He, J. Voordeckers, A. Zhou, Y.-J. Lee, O.U. Mason, E.A. Dubinsky, K.L. Chavarria, and others. 2012. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. The ISME Journal 6:451–460, https://doi.org/10.1038/ismej.2011.91.

MacDonald, I.R., O. Garcia-Pineda, A. Beet, S. Daneshgar Asl, L. Feng, G. Graettinger, D. French-McCay, J. Holmes, C. Hu, F. Huffer, and others. 2015. Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research 120:8,364–8,380, https://doi.org/​10.1002/2015JC011062.

Magnuson, J.P. 1990. Long-term ecological research and the invisible present. BioScience 40:495–501, https://doi.org/10.2307/1311317.

Mahmoudi, N., T.M. Porter, A.R. Zimmerman, R.R. Fulthorpe, G.N. Kasozi, B.R. Silliman, and G.F. Slater. 2013. Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environmental Science & Technology 47(23):13,303–13,312, https://doi.org/10.1021/es4036072.

Marin-Spiotta, E., K.E. Gruley, J. Crawford, E.E. Atkinson, J.R. Miesel, S. Greene, C. Cardona-Correa, and R.G.M. Spencer. 2014. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: Transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297, https://doi.org/10.1007/s10533-013-9949-7.

Marshall, A.G., and R.P. Rodgers. 2004. Petroleomics: The next grand challenge for chemical analysis. Accounts of Chemical Research 37:53–59, https://doi.org/10.1021/ar020177t.

Mason, O.U., J. Han, T. Woyke, and J.K. Jansson. 2014. Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Frontiers in Microbiology 5:332, https://doi.org/10.3389/fmicb.2014.00332.

Mason, O.U., T.C. Hazen, S. Borglin, P.S. Chain, E.A. Dubinsky, J.L. Fortney, J. Han, H.Y. Holman, J. Hultman, R. Lamendella, and others. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. The ISME Journal 6:1,715–1,727, https://doi.org/10.1038/ismej.2012.59.

Michel, J., E.H. Owens, S. Zengel, A. Graham, Z. Nixon, T. Allard, W. Holton, P.D. Reimer, A. Lamarche, M. White, and others. 2013. Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. PloS ONE 8(6):e65087, https://doi.org/10.1371/journal.pone.0065087.

Ornston, L.N., and R.Y. Stanier. 1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. Journal of Biological Chemistry 241(16):3,776–3,786.

Ortmann, A.C., J. Anders, N. Shelton, L. Gong, A.G. Moss, and R.H. Condon. 2012. Dispersed oil disrupts microbial pathways in pelagic food webs. PLoS ONE 7:e42548, https://doi.org/10.1371/​journal.pone.0042548.

Ortmann, A.C., and Y. Lu. 2015. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination. Marine Pollution Bulletin 90(1):106–114, https://doi.org/10.1016/j.marpolbul.2014.11.013.

Overholt, W.A., K.P. Marks, I.C. Romero, D.J. Hollander, T.W. Snell, and J.E. Kostka. 2016. Hydrocarbon-degrading bacteria exhibit species-specific response to dispersed oil while moderating ecotoxicity. Applied and Environmental Microbiology 82(2):518–527, https://doi.org/10.1128/AEM.02379-15.

Reddy, C.M., J.S. Arey, J.S. Seewald, S.P. Sylva, K.L. Lemkau, R.K. Nelson, C.A. Carmichael, C.P. McIntyre, J. Fenwick, G.T. Ventura, and others. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109:20,229–20,234, https://doi.org/​10.1073/pnas.1101242108.

Redmond, M.C., and D.L. Valentine. 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109:20,292–20,297, https://doi.org/10.1073/pnas.1108756108.

Richnow, H.H., A. Eschenbach, B. Mahro, R. Seifert, P. Wehrung, P. Albrecht, and W. Michaelis. 1998. The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil. Chemosphere 36:2,211–2,224, https://doi.org/​10.1016/S0045-6535(97)10193-X.

Rodriguez-R, L.M., W.A. Overholt, C. Hagan, M. Huettel, J.E. Kostka, and K.T. Konstantinidis. 2015. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. The ISME Journal 9:1,928–1,940, https://doi.org/10.1038/ismej.2015.5.

Ruddy, B.M., M. Huettel, J.E. Kostka, V.V Lobodin, B.J. Bythell, A.M. McKenna, C. Aeppli, C.M. Reddy, R.K. Nelson, A.G. Marshall, and R.P. Rodgers. 2014. Targeted petroleomics: Analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy & Fuels 28(6):4,043–4,050, https://doi.org/10.1021/ef500427n.

Ruff, S.E., J.F. Biddle, A.P. Teske, K. Knittel, A. Boetius, and A. Ramette. 2015. Global dispersion and local diversification of the methane seep microbiome. Proceedings of the National Academy of Sciences of the United States of America 112:4,015–4,020, https://doi.org/10.1073/pnas.1421865112.

Schedler, M., R. Hiessl, A.G.V. Juarez, G. Gust, and R. Müller. 2014. Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77, https://doi.org/10.1186/s13568-014-0077-0.

Scott, N.M., M. Hess, N.J. Bouskill, O.U. Mason, J.K. Jansson, and J.A. Gilbert. 2014. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Frontiers in Microbiology 5:108, https://doi.org/​10.3389/fmicb.2014.00108.

Seidel, M., S. Kleindienst, T. Dittmar, S.B. Joye, and P.M. Medeiros. 2016. Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: Insights from ultra-high resolution mass spectrometry. Deep Sea Research Part II 129:108–118, https://doi.org/10.1016/​j.dsr2.2015.05.012.

Sogin, M.L., H.G. Morrison, J.A. Huber, D.M. Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proceedings of the National Academy of Sciences of the United States of America 103:12,115–12,120, https://doi.org/10.1073/pnas.0605127103.

Syed, K., C. Kattamuri, T.B. Thompson, and J.S. Yadav. 2011. Cytochrome b5 reductase-cytochrome b5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: Atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Archives of Biochemistry and Biophysics 509(1):26–32, https://doi.org/10.1016/​j.abb.2011.02.023.

Throne-Holst, M., A. Wentzel, T.E. Ellingsen, H.-K. Kotlar, and S.B. Zotchev. 2007. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Applied and Environmental Microbiology 73(10):3,327–3,332, https://doi.org/10.1128/AEM.00064-07.

Valentine, D.L., J.D. Kessler, M.C. Redmond, S.D. Mendes, M.B. Heintz, and C. Farwell. 2010. Propane respiration jump-starts microbial response to a deep oil spill. Science 330:208–211, https://doi.org/10.1126/science.1196830.

van Beilen, J.B., and E.B. Funhoff. 2007. Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology 74(1):13–21, https://doi.org/10.1007/s00253-006-0748-0.

van Beilen, J.B., J. Kingma, and B. Witholt. 1994. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme and Microbial Technology 16:904–911, https://doi.org/10.1016/0141-0229(94)90066-3.

Wang, W., and Z. Shao. 2013. Enzymes and genes involved in aerobic alkane degradation. Frontiers in Microbiology 4:116, https://doi.org/10.3389/fmicb.2013.00116.

Widdel, F., K. Knittel, and A. Galushko. 2010. Anaerobic hydrocarbon-degrading microorganisms: An overview. Pp. 1,997–2,021 in Handbook of Hydrocarbon and Lipid Microbiology. K.N. Timmis, T. McGenity, J.R. van der Meer, and V. de Lorenzo, eds, Springer Berlin Heidelberg.

Widdel, F., and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology 12(3):259–76, https://doi.org/10.1016/S0958-1669(00)00209-3

Wilkes, H., R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel. 2002. Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Archives of Microbiology 177(3):235–243, https://doi.org/10.1007/s00203-001-0381-3.

Yang, T., L. Nigro, T. Gutierrez, S.B. Joye, and A.P. Teske. 2014. Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep Sea Research Part II 129:282–291, https://doi.org/10.1016/j.dsr2.2014.01.014.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.