Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 02

View Issue TOC
Volume 25, No. 2
Pages 56 - 65

OpenAccess

Regional Models of Internal Tides

By Glenn S. Carter , Oliver B. Fringer, and Edward D. Zaron 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Internal tides are ubiquitous in the ocean, and they play an important role in a range of ocean processes, for example, particle dispersal, acoustics, and vertical buoyancy flux. The wavelength of internal tides can be as much as 250 km in the open ocean, but as the generation of these tides depends on the angle between the depth-averaged current and the topography, there can be considerable local spatial variability. This range of scales makes it difficult to develop a comprehensive understanding of the processes involved from observations alone. Regional numerical modeling provides a way to study the generation and early propagation of internal tides at high resolution. Here, we review the role that regional internal tide models, primarily hydrostatic models, can play in increasing our understanding.

Citation

Carter, G.S., O.B. Fringer, and E.D. Zaron. 2012. Regional models of internal tides. Oceanography 25(2):56–65, https://doi.org/10.5670/oceanog.2012.42.

References
    Alford, M.H., J.A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock. 2007. Internal waves across the Pacific. Geophysical Research Letters 34, L24601, https://doi.org/10.1029/2007GL031566.
  1. Arbic, B.K., J.G. Richman, J.F. Shriver, P.G. Timko, E.J. Metzger, and A.J. Wallcraft. 2012. Global modeling of internal tides within an eddying ocean general circulation model. Oceanography 25(2):20–29, https://doi.org/10.5670/oceanog.2012.38.
  2. Aucan, J., and M.A. Merrifield. 2008. Boundary mixing associated with tidal and near-inertial internal waves. Journal of Physical Oceanography 38(6):1,238–1,252, https://doi.org/10.1175/2007JPO3718.1.
  3. Bleck, R., and E.P. Chassignet. 1994. Simulating the oceanic circulation with isopycnic-coordinate models. Pp. 17–39 in The Oceans: Physical-Chemical Dynamics and Human Impact. S.K. Majumdar, E.W. Miller, G.S. Forbes, R.F. Schmalz, and A.A. Panah, eds, The Pennsylvania Academy of Science.
  4. Blumberg, A.F., and G.L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model. Pp. 1–16 in Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, vol. 4. N.S. Heaps, ed., American Geophysical Union, Washington, DC, https://doi.org/10.1029/CO004p0001.
  5. Buijsman, M.C., Y. Uchiyama, J.C. McWilliams, and C.R. Hill-Lindsay. 2012. Modeling semidiurnal internal tide variability in the Southern California Bight. Journal of Physical Oceanography 42(1):62–77, https://doi.org/10.1175/2011JPO4597.1.
  6. Carter, G.S. 2010. Barotropic and baroclinic M2 tides in the Monterey Bay region. Journal of Physical Oceanography 40(8):1,766–1,783, https://doi.org/10.1175/2010JPO4274.1.
  7. Carter, G.S., M.C. Gregg, and M.A. Merrifield. 2006. Flow and mixing around a small seamount on Kaena Ridge, Hawaii. Journal of Physical Oceanography 36(6):1,036–1,052, https://doi.org/10.1175/JPO2924.1.
  8. Carter, G.S., M.A. Merrifield, J.M. Becker, K. Katsumata, M.C. Gregg, D.S. Luther, M.D. Levine, T.J. Boyd, and Y.L. Firing. 2008. Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. Journal of Physical Oceanography 38(10):2,205–2,223, https://doi.org/10.1175/2008JPO3860.1.
  9. Carton, J.A., and B.S. Giese. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Monthly Weather Review 136:2,999–3,017, https://doi.org/10.1175/2007MWR1978.1.
  10. Chavanne, C., P. Flament, G.S. Carter, M.A. Merrifield, D. Luther, E. Zaron, and K.-W. Gurgel. 2010. The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part I: Observations and numerical predictions. Journal of Physical Oceanography 40(6):1,155–1,179, https://doi.org/10.1175/2010JPO4222.1.
  11. Di Lorenzo, E., W.R. Young, and S. Llewellyn Smith. 2006. Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. Journal of Physical Oceanography 36(6):1,072–1,084, https://doi.org/10.1175/JPO2880.1.
  12. Dickey, J.O., P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, and others. 1994. Lunar laser ranging: A continuing legacy of the Apollo Program. Science 265(5171):482–490, https://doi.org/10.1126/science.265.5171.482.
  13. Duda, T.F., J.F. Lynch, J.D. Irish, R.C. Beardsley, S.R. Ramp, C.-S. Chiu, T.-Y. Tang, and Y.-J. Yang. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering 29:1,105–1,130, https://doi.org/10.1109/JOE.2004.836998.
  14. Dushaw, B.D., B.M. Howe, B.D. Cornuelle, P.F. Worcester, and D.S. Luther. 1995. Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. Journal of Physical Oceanography 25(4):631–647, https://doi.org/10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2.
  15. Egbert, G.D., and R.D. Ray. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778, https://doi.org/10.1038/35015531.
  16. Egbert, G.D., and R.D. Ray. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. Journal of Geophysical Research 106(C10):22,475–22,502, https://doi.org/10.1029/2000JC000699.
  17. Floor, J.W., F. Auclair, and P. Marsaleix. 2011. Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modelling 38:22–40, https://doi.org/10.1016/j.ocemod.2011.01.009.
  18. Friedrich, T., A. Timmermann, T. Decloedt, D.S. Luther, and A. Mouchet. 2011. The effect of topography-enhanced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry. Ocean Modelling 39:262–274, https://doi.org/10.1016/j.ocemod.2011.04.012.
  19. Fringer, O.B., M. Gerritsen, and R.L. Street. 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator. Ocean Modelling 14:139–278, https://doi.org/10.1016/j.ocemod.2006.03.006.
  20. Garrett, C., and E. Kunze. 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics 39:57–87, https://doi.org/10.1146/annurev.fluid.39.050905.110227.
  21. Gordon, R.L., and N.F. Marshall. 1979. Submarine canyons: Internal wave traps? Geophysical Research Letters 3:622–624, https://doi.org/10.1029/GL003i010p00622.
  22. Gregg, M.C. 1989. Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research 94(C7):9,686–9,698, https://doi.org/10.1029/JC094iC07p09686.
  23. Hall, R.A., and G.S. Carter. 2011. Internal tides in Monterey Submarine Canyon. Journal of Physical Oceanography 41(1):186–204, https://doi.org/10.1175/2010JPO4471.1.
  24. Hallberg, R.W., and P.B. Rhines. 1996. Buoyancy-driven circulation in an ocean basin with isopycnals intersecting the sloping boundary. Journal of Physical Oceanography 26(6):913–940, https://doi.org/10.1175/1520-0485(1996)026<0913:BDCIAO>2.0.CO;2.
  25. Hotchkiss, F.S., and C. Wunsch. 1982. Internal waves in Hudson Canyon with possible geological implications. Deep Sea Research 29(4):415–442, https://doi.org/10.1016/0198-0149(82)90068-1.
  26. Jachec, S.M., O.B. Fringer, M.G. Gerritsen, and R.L. Street. 2006. Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area. Geophysical Research Letters 33, L12605, https://doi.org/10.1029/2006GL026314.
  27. Jachec, S.M., O.B. Fringer, M.G. Gerritsen, and R.L. Street. 2007. Effects of grid resolution on the simulation of internal tides. International Journal of Offshore and Polar Engineering 17(2):105–111.
  28. Johnston, T.M.S., and M.A. Merrifield. 2003. Internal tide scattering at seamounts, ridges, and islands. Journal of Geophysical Research 108(C6), 3180, https://doi.org/10.1029/2002JC001528.
  29. Johnston, T.M.S., M.A. Merrifield, and P.E. Holloway. 2003. Internal tide scattering at the Line Islands. Journal of Geophysical Research 108(C11), 3365, https://doi.org/10.1029/2003JC001844.
  30. Kang, D., and O.B. Fringer. 2010. On the calculation of available potential energy in internal wave fields. Journal of Physical Oceanography 40:2,539–2,545, https://doi.org/10.1175/2010JPO4497.1.
  31. Kang, D., and O.B. Fringer. 2012. Energetics of barotropic and baroclinic tides in the Monterey Bay area. Journal of Physical Oceanography 42(2):272–290, https://doi.org/10.1175/JPO-D-11-039.1.
  32. Kelly, S.M., and J.D. Nash. 2010. Internal-tide generation and destruction by shoaling internal tides. Geophysical Research Letters 37, L23611, https://doi.org/10.1029/2010GL045598.
  33. Klymak, J.M., J.M. Moum, J.D. Nash, E. Kunze, J.B. Girton, G.S. Carter, C.M. Lee, T.B. Sanford, and M.C. Gregg. 2006. An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. Journal of Physical Oceanography 36(6):1,148–1,164, https://doi.org/10.1175/JPO2885.1.
  34. Kurapov, A.L., G.D. Egbert, J.S. Allen, R.N. Miller, S.Y. Erofeeva, and P.M. Kosro. 2003. The M2 internal tide off Oregon: Inferences from data assimilation. Journal of Physical Oceanography 33:1,733–1,757.
  35. Ledwell, J.R., A.J. Watson, and C.S. Law. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703, https://doi.org/10.1038/364701a0.
  36. Lee, C.M., E. Kunze, T.B. Sanford, J.D. Nash, M.A. Merrifield, and P.E. Holloway. 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge with model comparisons. Journal of Physical Oceanography 36:1,165–1,183, https://doi.org/10.1175/JPO2886.1.
  37. Leichter, J.J., H.L. Stewart, and S.L. Miller. 2003. Episodic nutrient transport to Florida coral reefs. Limnology and Oceanography 48:1,394-1,407.
  38. Lynch, J.F., S.R. Ramp, C.-S. Chiu, T.Y. Tang, Y.-J. Yang, and J.A. Simmen. 2004. Research highlights from the Asian Seas International Acoustics Experiment in the South China Sea. IEEE Journal of Oceanic Engineering 29:1,067–1,074, https://doi.org/10.1109/JOE.2005.843162.
  39. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite- volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102(C3):5,753–5,766.
  40. Martini, K.I., M.H. Alford, E. Kunze, S.M. Kelly, and J.D. Nash. 2011. Observations of internal tides on the Oregon continental slope. Journal of Physical Oceanography 41(9):1,772–1,794, https://doi.org/10.1175/2011JPO4581.1.
  41. Martini, K.I., M.H. Alford, J. Nash, E. Kunze, and M.A. Merrifield. 2007. Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophysical Research Letters 34, L17604, https://doi.org/10.1029/2007GL029749.
  42. Mellor, G.L., T. Ezer, and L.Y. Oey. 1994. The pressure gradient conundrum of sigma coordinate ocean models. Journal of Atmospheric and Oceanic Technology 11:1,126–1,134, https://doi.org/10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2.
  43. Merrifield, M.A., and P.E. Holloway. 2002. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. Journal of Geophysical Research 107, 3179, https://doi.org/10.1029/2001JC000996.
  44. Mooers, C.N.K. 1973. Sound speed perturbations due to internal tides. Journal of the Acoustical Society America 53(1):333, https://doi.org/10.1121/1.1982376.
  45. Munk, W.H., 1966. Abyssal recipes. Deep Sea Research 13:707–730.
  46. Munk, W.H., 1997. Once again: Once again—tidal friction. Progress in Oceanography 40:7–35, https://doi.org/10.1016/S0079-6611(97)00021-9.
  47. Munk, W., and C. Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I 45:1,977–2,010, https://doi.org/10.1016/S0967-0637(98)00070-3.
  48. Nash, J.D., E. Kunze, J.M. Toole, and R.W. Schmit. 2004. Internal tide reflection and turbulent mixing on the continental slope. Journal of Physical Oceanography 34:1,117–1,134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.
  49. Niwa, Y., and T. Hibiya. 2001. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. Journal of Geophysical Research 106(C10):22,441–22,449, https://doi.org/10.1029/2000JC000770.
  50. Pacanowski, R.C., and A. Gnanadesikan. 1998. Transient response in a Z-level ocean model that resolves topography with partial cells. Monthly Weather Review 126(12):3,248–3,270, https://doi.org/10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2.
  51. Pereira, A.F., B.M. Castro, L. Calado, and I.C.A. da Silveira. 2007. Numerical simulation of M2 internal tides in the South Brazil Bight and their interaction with the Brazil Current. Journal of Geophysical Research 112, C04009, https://doi.org/10.1029/2006JC003673.
  52. Pineda, J., J.A. Hare, and S. Sponaugle. 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3):22–39, https://doi.org/10.5670/oceanog.2007.27.
  53. Rainville, L., T.M.S. Johnston, G.S. Carter, M.A. Merrifield, R. Pinkel, P.F. Worcester, and B.D. Dushaw. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. Journal of Physical Oceanography 40:311–325, https://doi.org/10.1175/2009JPO4256.1.
  54. Rainville, L., and R. Pinkel. 2006. Propagation of low-mode internal waves through the ocean. Journal of Physical Oceanography 36:1,220–1,236, https://doi.org/10.1175/JPO2889.1.
  55. Ray, R.D., and G.T. Mitchum. 1996. Surface manifestation of internal tides generated near Hawaii. Geophysical Research Letters 23(16):2,101–2,104, https://doi.org/10.1029/96GL02050.
  56. Rudnick, D.L., T.J. Boyd, R.E. Brainard, G.S. Carter, G.D. Egbert, M.C. Gregg, P.E. Holloway, J.M. Klymak, E. Kunze, C.M. Lee, and others. 2003. From tides to mixing along the Hawaiian Ridge. Science 301:355–357, https://doi.org/10.1126/science.1085837.
  57. Shchepetkin, A.F. and J. McWilliams. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. Journal of Geophysical Research 108, 3090, https://doi.org/10.1029/2001JC001047.
  58. Shchepetkin, A.F., and J.C. McWilliams. 2005. The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography following coordinates ocean model. Ocean Modelling 9:347–404, https://doi.org/10.1016/j.ocemod.2004.08.002.
  59. Simmons, H.L., M.-H. Chang, Y.-T. Chang, S.-Y. Chao, O.B. Fringer, C.R. Jackson, and D.S. Ko. 2011. Modeling and prediction of internal waves in the South China Sea. Oceanography 24(4):88–99, https://doi.org/10.5670/oceanog.2011.97.
  60. Simmons, H.L., R.W. Hallberg, and B.K. Arbic. 2004. Internal wave generation in a global baroclinic tide model. Deep-Sea Research Part II 51:3,043–3,068, https://doi.org/10.1016/j.dsr2.2004.09.015.
  61. St. Laurent, L., and C. Garrett. 2002. The role of internal tides in mixing the deep ocean. Journal of Physical Oceanography 32(10):2,882–2,899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.
  62. St. Laurent, L.C., and J.D. Nash. 2004. An examination of the radiative and dissipative properties of deep ocean internal tides. Deep Sea Research Part II 51:3,029–3,042, https://doi.org/10.1016/j.dsr2.2004.09.008.
  63. Thresher, R., and W. Musial. 2010. Ocean renewable energy’s potential role in supplying future electrical energy needs. Oceanography 23(2):16–21, https://doi.org/10.5670/oceanog.2010.39.
  64. Vitousek, S., and O.B. Fringer. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling 40(1):72–86, https://doi.org/10.1016/j.ocemod.2011.07.002
  65. Wessel, P., D.T. Sandwell, and S.-S. Kim. 2010. The global seamount census. Oceanography 23(1):24–33, https://doi.org/10.5670/oceanog.2010.60.
  66. Wunsch, C. 1975. Internal tides in the ocean. Reviews of Geophysics 13(1):167–182, https://doi.org/10.1029/RG013i001p00167.
  67. Wunsch, C., and R. Ferrari. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics 36:281–314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.
  68. Zaron, E.D., C. Chavanne, G.D. Egbert, and P. Flament. 2009. Baroclinic tidal generation in the Kauai Channel inferred from high-frequency radio Doppler current meters. Dynamics of Atmospheres and Oceans 48:93–120, https://doi.org/10.1016/j.dynatmoce.2009.03.002.
  69. Zaron, E.D., and G.D. Egbert. 2006. Verification studies for a z-coordinate primitive-equation model: Tidal conversion at a mid-ocean ridge. Ocean Modelling 14:257–278, https://doi.org/10.1016/j.ocemod.2006.05.007.
  70. Zilberman, N.V., J.M. Becker, M.A. Merrifield, and G.S. Carter. 2009. Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. Journal of Physical Oceanography 39:2,635–2,651, https://doi.org/10.1175/2008JPO4136.1.
  71. Zilberman, N.V., M.A. Merrifield, G.S. Carter, D.S. Luther, M.D. Levine, and T.J. Boyd. 2011. Incoherent nature of M2 internal tides at the Hawaiian Ridge. Journal of Physical Oceanography 41:2,021–2036, https://doi.org/10.1175/JPO-D-10-05009.1.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.