Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 03

View Issue TOC
Volume 27, No. 3
Pages 44 - 55

OpenAccess

Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System

Clark Rowley Andrea Mask
Article Abstract

The US Navy maintains a capability for regional and coastal ocean modeling as part of a comprehensive effort to predict the impact of the environment (air, water, land, and ice) on naval operations, training, and support activities. The current operational regional ocean modeling capability is based on the Naval Research Laboratory’s RELOcatable ocean nowcast/forecast (RELO) system, and this system has formed the basis for further development in advanced data assimilation, ensemble prediction, and coupled modeling. This article presents an overview of the RELO system and its operational application.

Citation

Rowley, C., and A. Mask. 2014. Regional and coastal prediction with the Relocatable Ocean Nowcast/Forecast System. Oceanography 27(3):44–55, https://doi.org/10.5670/oceanog.2014.67.

References

Allard, R., E. Rogers, P. Martin, T. Jensen, P. Chu, T. Campbell, J. Dykes, T. Smith, J. Choi, and U. Gravois. 2014. The US Navy coupled ocean-wave prediction system. Oceanography 27(3):92–103, https://doi.org/10.5670/oceanog.2014.71.

Barron, C.N., A.B. Kara, P.J. Martin, R.C. Rhodes, and L.F. Smedstad. 2006. Formulation, implementation and examination of vertical coordinate choices in the global Navy Coastal Ocean Model (NCOM). Ocean Modelling 11:347–375, https://doi.org/10.1016/j.ocemod.2005.01.004.

Barron, C.N., and L.F. Smedstad. 2002. Global river inflow within the navy coastal ocean model. Pp. 1,472–1,479 in Proceedings of the Oceans 2002 MTS/IEEE Conference, Biloxi, MS, October 2002.

Bishop, C.H., and Z. Toth. 1999. Ensemble transformation and adaptive observations. Journal of the Atmospheric Sciences 56:1,748–1,765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

Bloom, S.C., L.L. Takacs, A.M. Da Silva, and D. Ledvina. 1996. Data assimilation using incremental analysis updates. Monthly Weather Review 124:1,256–1,271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

Chao, S.Y., D.S. Ko, R.C. Lien, and P.T. Shaw. 2007. Assessing the west ridge of Luzon Strait as an internal wave mediator. Journal of Oceanography 63:897–911, https://doi.org/10.1007/s10872-007-0076-8.

Coelho, E.F., G. Peggion, C. Rowley, G. Jacobs, R. Allard, and E. Rodriguez. 2009. A note on NCOM temperature forecast error calibration using the ensemble transform. Journal of Marine Systems 78:S272–S281, https://doi.org/10.1016/j.jmarsys.2009.01.028.

Cummings, J.A., and O.M. Smedstad. 2013. Variational data assimilation for the global ocean. Pp. 303–343 in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. II. S.K. Park and L. Xu, eds, Springer Berlin/Heidelberg.

De Mey, P., P. Craig, F. Davidson, C.A. Edwards, Y. Ishikawa, J.C. Kindle, R. Proctor, K.R. Thompson, J. Zhu, and the GODAE Coastal and Shelf Seas Working Group (CSSWG) Community. 2009. Applications in coastal modeling and forecasting. Oceanography 22(3):198–205, https://doi.org/10.5670/oceanog.2009.79.

Egbert, G.D., A.F. Bennett, and M.G.G. Foreman. 1994. TOPEX/Poseidon tides estimated using a global inverse model. Journal of Geophysical Research: Oceans 99:24,821–24,852, https://doi.org/10.1029/94JC01894.

Egbert, G.D., and S.Y. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19:183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

Evensen, G. 2009. Data Assimilation: The Ensemble Kalman Filter, 2nd ed. Springer, New York, 307 pp.

Fisher, M., and E. Andersson. 2001. Developments in 4D-Var and Kalman Filtering. Technical Memorandum 347, European Center for Medium Range Weather Forecasts, Reading, Berks, UK, 36 pp.

Fox, D.N., W.J. Teague, C.N. Barron, M.R. Carnes, and C.M. Lee. 2002. The Modular Ocean Data Analysis System (MODAS). Journal of Atmospheric and Oceanic Technology 19:240–252, https://doi.org/10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2.

Hodur, R.M., X. Hong, J.D. Doyle, J. Pullen, J. Cummings, P. Martin, and M.A. Rennick. 2002. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography 15(1):88–98, https://doi.org/10.5670/oceanog.2002.39.

Hogan, T.F., M. Liu, J.A. Ridout, M.S. Peng, T.R. Whitcomb, B.C. Ruston, C.A. Reynolds, S.D. Eckermann, J.R. Moskaitis, N.L. Baker, and others. 2014. The Navy Global Environmental Model. Oceanography 27(3):116–125, https://doi.org/10.5670/oceanog.2014.73.

Hong, X., and C. Bishop. 2013. Ocean ensemble forecasting and adaptive sampling. Pp. 391–409 in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. II. S.K. Park and L. Xu, eds, Springer Berlin/Heidelberg.

Horton, C., M. Clifford, J. Schmitz, and L.H. Kantha. 1997. A real-time oceanographic nowcast/forecast system for the Mediterranean Sea. Journal of Geophysical Research 102:25,123–25,156, https://doi.org/10.1029/97JC00533.

Kara, A.B., H.E. Hurlburt, and A.J. Wallcraft. 2005. Stability-dependent exchange coefficients for air-sea fluxes. Journal of Atmospheric and Oceanic Technology 22:1,080–1,094, https://doi.org/10.1175/JTECH1747.1.

Large, W.B., and S. Pond. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography 11:324–336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

Lermusiaux, P.F.J. 2006. Uncertainty estimation and prediction for interdisciplinary ocean dynamics. Journal of Computational Physics 217:176–199, https://doi.org/10.1016/j.jcp.2006.02.010.

Mainelli, M., M. DeMaria, L. Shay, and G. Goni. 2008. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting 23:3–16, https://doi.org/10.1175/2007WAF2006111.1.

Martin, P.J., S.R. Smith, G.M. Dawson, P.G. Posey, and E.D. Zaron. 2011. Validation test report for the Tidal Open-boundary Prediction System (TOPS). Memorandum Report NRL/MR/7320–11–9296. Naval Research Laboratory, Washington, DC, 66 pp.

Metzger, E.J., O.M. Smedstad, P.G. Thoppil, H.E. Hurlburt, J.A. Cummings, A.J. Wallcraft, L. Zamudio, D.S. Franklin, P.G. Posey, M.W. Phelps, and others. 2014. US Navy operational global ocean and Arctic ice prediction systems. Oceanography 27(3):32–43, https://doi.org/10.5670/oceanog.2014.66.

Ngodock, H.E., and M.J. Carrier. 2013. A weak constraint 4D-Var assimilation system for the Navy Coastal Ocean Model using the representer method. Pp. 367–390 in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. II. S.K. Park and L. Xu, eds, Springer Berlin/Heidelberg.

Wei, M., C. Rowley, P. Martin, C.N. Barron, and G. Jacobs. 2014. The US Navy’s RELO ensemble prediction system and its performance in the Gulf of Mexico. Quarterly Journal of the Royal Meteorological Society 140:1,120–1,149, https://doi.org/10.1002/qj.2199.

Willis, J.K., D. Roemmich, and B. Cornuelle. 2003. Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. Journal of Geophysical Research 108, 3292, http://dx.doi.org/10.1029/2002JC001755.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.