Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 100 - 112

OpenAccess

Recent Seismic Studies at the East Pacific Rise 8°20'–10°10'N and Endeavour Segment: Insights into Mid-Ocean Ridge Hydrothermal and Magmatic Processes

By Suzanne M. Carbotte , Juan Pablo Canales, Mladen R. Nedimović , Hélène Carton, and John C. Mutter  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

As part of the suite of multidisciplinary investigations undertaken by the Ridge 2000 Program, new multichannel seismic studies of crustal structure were conducted at the East Pacific Rise (EPR) 8°20’–10°10’N and Endeavour Segment of the Juan de Fuca Ridge. These studies provide important insights into magmatic systems and hydrothermal flow in these regions, with broader implications for fast- and intermediate-spreading mid-ocean ridges. A mid-crust magma body is imaged beneath Endeavour Segment underlying all known vent fields, suggesting that prior notions of a tectonically driven hydrothermal system at this site can be ruled out. There is evidence at both sites that the axial magma body is segmented on a similar 5–20 km length scale, with implications for the geometry of high-temperature axial hydrothermal flow and for lava geochemistry. The new data provide the first seismic reflection images of magma sills in the crust away from the axial melt lens. These off-axis magma reservoirs are the likely source of more-evolved lavas typically sampled on the ridge flanks and may be associated with off-axis hydrothermal venting, which has recently been discovered within the EPR site. Clusters of seismic reflection events at the base of the crust are observed, and localized regions of thick Moho Transition Zone, with frozen or partially molten gabbro lenses embedded within mantle rocks, are inferred. Studies of the upper crust on the flanks of Endeavour Segment provide new insights into the low-temperature hydrothermal flow that continues long after crustal formation. Precipitation of alteration minerals due to fluid flow leads to changes in P-wave velocities within seismic Layer 2A (the uppermost layer of the oceanic crust) that vary markedly with extent of sediment blanketing the crust. In addition, intermediate-scale variations in the structure of Layers 2A and 2B with local topography are observed that may result from topographically driven fluid upflow and downflow on the ridge flanks.

Citation

Carbotte, S.M., J.P. Canales, M.R. Nedimović, H. Carton, and J.C. Mutter. 2012. Recent seismic studies at the East Pacific Rise 8°20’–10°10’N and Endeavour Segment: Insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography 25(1):100–112, https://doi.org/10.5670/oceanog.2012.08.

References
    Barth, G.A., and J.C. Mutter. 1996. Variability in oceanic crustal thickness and structure: Multichannel seismic reflection results from the northern East Pacific Rise. Journal of Geophysical Research 101:17,951–17,975, https://doi.org/10.1029/96JB00814.
  1. Boudier, F., and A. Nicolas. 1995. Nature of the Moho transition zone in the Oman ophiolite. Journal of Petrology 36:777–796, http://petrology.oxfordjournals.org/content/36/3/777.abstract (accessed December 21, 2011).
  2. Carbotte, S.M., R.S. Detrick, J.P. Canales, A.J. Harding, G.M. Kent, J. Babcock, M.R. Nedimović, J.B. Diebold, and E. van Ark. 2006. Magmatic-tectonic episodicity at oceanic spreading centers revisited. Geology 34:209–212, https://doi.org/10.1130/G21969.1.
  3. Carbotte, S.M., M. Marjanovic, H.D. Carton, J.C. Mutter, J.P. Canales, M. Xu, M.R. Nedimović, and O. Aghaei. 2011. The ups and downs of magma in the crust beneath the East Pacific Rise axis 8°20’–10°10’N. Eos, Transactions, American Geophysical Union Fall Meeting Abstract OS22A-01.
  4. Carbotte, S.M., M.R. Nedimović, J.P. Canales, G.M. Kent, A.J. Harding, and M. Marjanovic. 2008. Variable crustal structure along the Juan de Fuca Ridge: Influence of on-axis hotspots and absolute plate motions. Geochemistry Geophysics Geosystems 9, Q08001, https://doi.org/10.1029/2007GC001922.
  5. Canales, J.P., H. Carton, S.M. Carbotte, J.C. Mutter, M.R. Nedimović, M. Xu, O. Aghaei, M. Marjanović, and K. Newman. In press. Network of off-axis melt bodies at the East Pacific Rise. Nature Geoscience.
  6. Canales, J.P., H. Carton, J.C. Mutter, A. Harding, S.M. Carbotte, and M.R. Nedimović. 2012. Recent advances in multichannel seismic imaging for academic research in deep oceanic environments. Oceanography 25(1):113–115, https://doi.org/10.5670/oceanog.2012.09.
  7. Canales, J.P., R.S. Detrick, S.M. Carbotte, G.M. Kent, J.B. Diebold, A.J. Harding, J. Babcock, M.R. Nedimović, and E. van Ark. 2005. Upper crustal structure and axial topography at intermediate-spreading ridges: Seismic constraints from the southern Juan de Fuca Ridge. Journal of Geophysical Research 110, B12104, https://doi.org/10.1029/2005JB003630.
  8. Canales, J.P., M.R. Nedimović, G.M. Kent, S.M. Carbotte, and R.S. Detrick. 2009. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca Ridge. Nature 460:89–93, https://doi.org/10.1038/nature08095.
  9. Canales, J.P., S.C. Singh, R.S. Detrick, S.M. Carbotte, A.J. Harding, G.M. Kent, J.B. Diebold, J. Babcock, and M.R. Nedimović. 2006. Seismic evidence for variations in axial magma chamber properties along the southern Juan de Fuca Ridge. Earth and Planetary Science Letters 246:353–366, https://doi.org/10.1016/j.epsl.2006.04.032.
  10. Carton, H.D., S.M. Carbotte, J.C. Mutter, J. Canales, M.R. Nedimović, O. Aghaei, M. Marjanović, and K.R. Newman. 2010. Three-dimensional seismic reflection images of axial melt lens and seismic Layer 2A between 9°42’N and 9°57’N on the East Pacific Rise. Eos, Transactions, American Geophysical Union 90:Fall Meeting Abstract OS21C-1514.
  11. Christeson, G.L., G.M. Kent, G.M. Purdy, and R.S. Detrick. 1996. Extrusive thickness variability at the East Pacific Rise, 9°–10°N: Constraints from seismic techniques. Journal of Geophysical Research 101:2,859–2,873, https://doi.org/10.1029/95JB03212.
  12. Christeson, G.L., K.D. McIntosh, and J.A. Karson. 2007. Inconsistent correlation of seismic Layer 2a and lava layer thickness in oceanic crust. Nature 445:418–421, https://doi.org/10.1038/nature05517.
  13. Collier, J.S., and S.C. Singh. 1997. Detailed structure of the top of the melt body beneath the East Pacific Rise at 9°40’N from waveform inversion of seismic reflection data. Journal of Geophysical Research 102:20,287–20,304, https://doi.org/10.1029/97JB01514.
  14. Combier, V., S.C. Singh, M. Cannat, and J. Escartin. 2008. Mechanical decoupling and thermal structure at the East Pacific Rise axis 9°N: Constraints from axial magma chamber geometry and seafloor structures. Earth and Planetary Science Letters 272:19–28, https://doi.org/10.1016/j.epsl.2008.03.046.
  15. Cowen, J.P., B. Glazer, D.J. Fornari, T.M. Shank, S.A. Soule, B. Love, A. Treusch, K.R. Pomanig, R.C. Holmes, M. Tolstoy, and E.T. Baker. 2007. Volcanic eruptions at East Pacific Rise near 9°50’N. Eos, Transactions, American Geophysical Union 88(7):81, https://doi.org/10.1029/2007EO070001.
  16. Crawford, W.C., and S.C. Webb. 2002. Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°–10°N. Earth and Planetary Science Letters 203:117–130, https://doi.org/10.1016/S0012-821X(02)00831-2.
  17. Crawford, W.C., S.C. Webb, and J.A. Hilderbrand. 1999. Constraints on melt in the lower crust and Moho at the East Pacific Rise using seafloor compliance measurements. Journal of Geophysical Research 104:2,923–2,939, https://doi.org/10.1029/1998JB900087.
  18. Cudrak, C.F., and R.M. Clowes. 1993. Crustal structure of Endeavour Ridge Segment, Juan de Fuca Ridge, from a detailed seismic refraction survey. Journal of Geophysical Research 98:6,329–6,349, https://doi.org/10.1029/92JB02860.
  19. Detrick, R.S., P. Buhl, E.E. Vera, J.C. Mutter, J.A. Orcutt, J.A. Madsen, and T.M. Brocher. 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41, https://doi.org/10.1038/326035a0.
  20. Dunn, R.A., and D.R. Toomey. 1997. Seismological evidence for three-dimensional melt migration beneath the East Pacific Rise. Nature 388:259–262, https://doi.org/10.1038/40831.
  21. Dunn, R.A., D.R. Toomey, and S.C. Solomon. 2000. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30’N. Journal of Geophysical Research 105:23,537–23,555, https://doi.org/10.1029/2000JB900210.
  22. Durant, D.T., and D.R. Toomey. 2009. Evidence and implications of crustal magmatism on the flanks of the East Pacific Rise. Earth and Planetary Science Letters 287:130–136, https://doi.org/10.1016/j.epsl.2009.08.003.
  23. Fornari, D.J., K.L. Von Damm, J.G. Bryce, J.P. Cowen, V. Ferrini, A. Fundis, M.D. Lilley, G.W. Luther III, L.S. Mullineaux, M.R. Perfit, and others. 2012. The East Pacific Rise between 9°N and 10°N: Twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography 25(1):18–43, https://doi.org/10.5670/oceanog.2012.02.
  24. Fornari, D.J., R.M. Haymon, M.R. Perfit, T.K.P. Gregg, and M.H. Edwards. 1998. Axial summit trough of the East Pacific Rise 9°–10°N: Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges. Journal of Geophysical Research 103:9,827–9,855, https://doi.org/10.1029/98JB00028.
  25. Fornari, D.J., W.B.F. Ryan, and P.J. Fox. 1984. The evolution of craters and calderas on young seamounts: Insights from Sea MARC I and Sea Beam sonar surveys of a small seamount group near the axis of the East Pacific Rise at 10°N. Journal of Geophysical Research 89:11,069–11,083.
  26. Garmany, J. 1989. Accumulations of melt at the base of young oceanic crust. Nature 340:628–632, https://doi.org/10.1038/340628a0.
  27. Glickson, D.A., D.S. Kelley, and J.R. Delaney. 2007. Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge. Geochemistry Geophysics Geosystems 8, Q06010, https://doi.org/10.1029/2007GC001588.
  28. Goldstein, S.J., M.R. Perfit, R. Batiza, D.J. Fornari, and M.T. Murrell. 1994. Off-axis volcanism at the East Pacific Rise detected by uranium-series dating of basalts. Nature 367:157–159, https://doi.org/10.1038/367157a0.
  29. Goss, A.R., M.R. Perfit, W.I. Ridley, K.H. Rubin, G.D. Kamenov, S.A. Soule, A. Fundis, and D.J. Fornari. 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46’N–9°56’N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry Geophysics Geosystems 11, Q05T09, https://doi.org/10.1029/2009GC002977.
  30. Grevemeyer, I., and A. Bartetzko. 2004. Hydrothermal activity and ageing of oceanic crust. Pp. 128–150 in Hydrogeology of the Oceanic Lithosphere. E.E. Davis and H. Elderfield, eds, Cambridge University Press.
  31. Grevemeyer, I., N. Kaul, H. Villinger, and W. Weigel. 1999. Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust. Journal of Geophysical Research 104:5,069–5,079, https://doi.org/10.1029/1998JB900096.
  32. Harding, A.J., G.M. Kent, and J.A. Orcutt. 1993. A multichannel seismic investigation of upper crustal structure at 9°N on the East Pacific Rise: Implications for crustal accretion. Journal of Geophysical Research 98:13,925–13,944, https://doi.org/10.1029/93JB00886.
  33. Haymon, R.M., D.J. Fornari, M. Edwards, S.M. Carbotte, D. Wright, and K.C. Macdonald. 1991. Hydrothermal vent distribution along the East Pacific Rise crest (9°09’–9°54’N) and its relationship to magmatic and tectonic processes on fast spreading mid-ocean ridges. Earth and Planetary Science Letters 104:513–534, https://doi.org/10.1016/0012-821X(91)90226-8.
  34. Haymon, R.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, M.R. Perfit, J.M. Edmond, W.C. Shanks III, R.A. Lutz, J.M. Grebmeier, S. Carbotte, and others. 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52’N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters 119:85–101, https://doi.org/10.1016/0012-821X(93)90008-W.
  35. Haymon, R.M., K.C. Macdonald, S.B. Benjamin, and C.J. Ehrhardt. 2005. Manifestations of hydrothermal discharge from young abyssal hills on the fast-spreading East Pacific Rise flank. Geology 33:153–156, https://doi.org/10.1130/G21058.1.
  36. Hussenoeder, S.A., J.A. Collins, G.M. Kent, R.S. Detrick, and the TERA Group. 1996. Seismic analysis of the axial magma chamber reflector along the southern East Pacific Rise from conventional reflection profiling. Journal of Geophysical Research 101:22,087–22,105, https://doi.org/10.1029/96JB01907.
  37. Kappel, E.S., and W.B.F. Ryan. 1986. Volcanic episodicity and a non-steady state rift valley along the Northeast Pacific spreading centers: Evidence from Sea MARC I. Journal of Geophysical Research 91:13,925–13,940, https://doi.org/10.1029/JB091iB14p13925.
  38. Kelemen, P.B., K. Koga, and N. Shimizu. 1997. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters 146:475–488, https://doi.org/10.1016/S0012-821X(96)00235-X.
  39. Kelley, D.S., S.M. Carbotte, D.W. Caress, D.A. Clague, J.R. Delaney, J.B. Gill, H. Hadaway, J.F. Holden, E.E.E. Hooft, J.P. Kellogg, and others. 2012. Endeavour Segment of the Juan de Fuca Ridge: One of the most remarkable places on Earth. Oceanography 25(1):44–61, https://doi.org/10.5670/oceanog.2012.03.
  40. Kent, G.M., A.J. Harding, and J.A. Orcutt. 1993a. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9°17’N Deval from forward modeling of common depth point data. Journal of Geophysical Research 98:13,945–13,969, https://doi.org/10.1029/93JB00705.
  41. Kent, G.M., A.J. Harding, and J.A. Orcutt. 1993b. Distribution of magma beneath the East Pacific Rise near the 9°03’N overlapping spreading center from forward modeling of common depth point data. Journal of Geophysical Research 98:13,971–13,995, https://doi.org/10.1029/93JB00706.
  42. Kent, G.M., A.J. Harding, J.A. Orcutt, R.S. Detrick, J.C. Mutter, and P. Buhl. 1994. The uniform accretion of oceanic crust south of the Garrett Transform at 14°15’S on the East Pacific Rise. Journal of Geophysical Research 99:9,097–9,116.
  43. Kent, G.M., S.C. Singh, A.J. Harding, M.C. Sihna, J.A. Orcutt, P.J. Barton, R.S. White, S. Bazin, R.W. Hobbs, C.H. Tong, and J.W. Pye. 2000. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean ridge discontinuities. Nature 406:614–618, https://doi.org/10.1038/35020543.
  44. Key, K., S. Constable, J. Behrens, G. Heinson, and C. Weiss. 2005. Mapping the northern EPR magmatic system using marine EM. Ridge 2000 Events 3:35–37.
    Mottl, M.J. 2003. Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. Pp. 271–286 in Energy and Mass Transfer in Marine Hydrothermal Systems. P. Halbach, V. Tunnicliffe, and J.R. Hein, eds, Dahlem University Press.
  45. Mutter, J.C., S.M. Carbotte, M. Nedimović, J.P. Canales, and H. Carton. 2009. Seismic imaging in three dimensions on the East Pacific Rise. Eos, Transactions, American Geophysical Union 90(42):374–375, https://doi.org/10.1029/2009EO420002.
  46. Nedimović, M., S.M. Carbotte, J.B. Diebold, A.J. Harding, J.P. Canales, and G.M. Kent. 2008. Upper crustal evolution along the Juan de Fuca Ridge flanks. Geochemistry Geophysics Geosystems 9, Q09006, https://doi.org/10.1029/2008GC002085.
  47. Nedimović, M.R., S.M. Carbotte, A.J. Harding, R.S. Detrick, J.P. Canales, J.B. Diebold, G.M. Kent, M. Tischer, and J.M. Babcock. 2005. Frozen magma lenses below the oceanic crust. Nature 436:1,149–1,152, https://doi.org/10.1038/nature03944.
  48. Newman, K., M.R. Nedimović, J.P. Canales, and S.M. Carbotte. 2011. Evolution of seismic Layer 2B at the Juan de Fuca Ridge from hydrophone streamer 2D traveltime tomography. Geochemistry Geophysics Geosystems 12, Q05009, https://doi.org/10.1029/2010GC003462.
  49. Perfit, M.R., D.J. Fonari, M.C. Smith, J.F. Bender, C.H. Langmuir, and R.M. Haymon. 1994. Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology 22:375–379, https://doi.org/10.1130/0091-7613(1994)022<0375:SSSATV>2.3.CO;2.
  50. Perfit, M.R., V.D. Wanless, W.I. Ridley, E.M. Klein, M.C. Smith, A.R. Goss, J.S. Hinds, S.W. Kutza, and D.J. Fornari. 2012. Lava geochemistry as a probe into crustal formation at the East Pacific Rise. Oceanography 25(1):89–93, https://doi.org/10.5670/oceanog.2012.06.
  51. Rohr, K.M.M. 1994. Increase of seismic velocities in upper oceanic crust and hydrothermal circulation in the Juan de Fuca Plate. Geophysical Research Letters 19:2,163–2,166, https://doi.org/10.1029/94GL01913.
  52. Rohr, K.M.M., B. Milkereit, and C.J. Yorath. 1988. Asymmetric deep crustal structure across the Juan de Fuca Ridge. Geology 16:533–537, https://doi.org/10.1130/0091-7613(1988)016<0533:ADCSAT>2.3.CO;2.
  53. Rubin, K.H., J.D. Macdougall, and M.R. Perfit. 1994. 210Po-210Pb dating of recent volcanic eruptions on the sea floor. Nature 368:841–844, https://doi.org/10.1038/368841a0.
  54. Sims, K.W.W., J. Blichert-Toft, D.J. Fornari, M.R. Perfit, S.J. Goldstein, P. Johnson, D.J. DePaolo, S.R. Hart, M.T. Murrell, P.J. Michael, and others. 2003. Aberrant youth: Chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°–10°N. Geochemistry, Geophysics, Geosystems 4(10), 8621, https://doi.org/10.1029/2002GC000443.
  55. Singh, S.C., A.J. Harding, G.M. Kent, M.C. Sinha, V. Combier, S. Bazin, C.H. Tong, J.W. Pye, P.J. Barton, R.W. Hobbs, and others. 2006. Seismic reflection images of the Moho underlying melt sills at the East Pacific Rise. Nature 442:287–290, https://doi.org/10.1038/nature04939.
  56. Sinton, J.M., D.S. Wilson, D.M. Christie, R.N. Hey, and J.R. Delaney. 1983. Petrologic consequences of rift propagation on oceanic spreading ridges. Earth and Planetary Science Letters 62:193–207, https://doi.org/10.1016/0012-821X(83)90083-3.
  57. Soule, S.A., D.J. Fornari, M.R. Perfit, and K.H. Rubin. 2007. New insights into mid-ocean ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9°46’N-9°56’N. Geology 35:1,079–1,082, https://doi.org/10.1130/G23924A.1.
  58. Tolstoy, M., J.P. Cowen, E.T. Baker, D.J. Fornari, K.H. Rubin, T.M. Shank, F. Waldhauser, D.R. Bohnenstiehl, D.W. Forsyth, R.C. Holmes, and others. 2006. A sea-floor spreading event captured by seismometers. Science 314:1,920–1,922, https://doi.org/10.1126/science.1133950.
  59. Toomey, D.R., E.E. Hooft, and W.S. Wilcock. 2010. Mantle flow beneath the Juan de Fuca and East Pacific Rise spreading centers and adjacent plates. Eos, Transactions, American Geophysical Union 90(52):Fall 2010 Meeting Abstract OS24A-03.
  60. Toomey, D.R., D. Jousselin, R.A. Dunn, W.S.D. Wilcock, and R.S. Detrick. 2007. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446:409–414, https://doi.org/10.1038/nature05679.
  61. Turner, S., C. Beier, Y. Niu, and C. Cook. 2011. U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30’N, 10°30’N, and 11°20’N. Geochemistry Geophysics Geosystems 12, Q0AC12, https://doi.org/10.1029/2010GC003403.
  62. Van Ark, E.M., R.S. Detrick, J.P. Canales, S. Carbotte, A.J. Harding, G.M. Kent, M.R. Nedimović, W.S.D. Wilcock, J.B. Diebold, and J.M. Babcock. 2007. Seismic structure of the Endeavour Segment Juan de Fuca Ridge: Correlations with seismicity, faulting and hydrothermal activity. Journal of Geophysical Research 112, B02401, https://doi.org/10.1029/2005JB004210.
  63. Vera, E.E., J.C. Mutter, P. Buhl, J.A. Orcutt, A.J. Harding, M.E. Kappus, R.S. Detrick, and T.M. Brocher. 1990. The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. Journal of Geophysical Research 95(B10):15,529–15,556, https://doi.org/10.1029/JB095iB10p15529.
  64. Von Damm, K.L. 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50’N: Geochemical evidence for changes in the upper oceanic crust. Pp. 285–304 in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Ocean. C.R. German, ed., Geophysical Monograph 148, American Geophysical Union, Washington, DC.
  65. Waters, C.L., K.W.W. Sims, M.R. Perfit, J. Blichert-Toft, and J. Blusztajn. 2011. Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10°N East Pacific Rise. Journal of Petrology 52(3):565–602, https://doi.org/10.1093/petrology/egq091.
  66. White, D.J., and R.M. Clowes. 1994. Seismic attenuation structure beneath the Juan de Fuca Ridge from tomographic inversion of amplitudes. Journal of Geophysical Research 99:3,043–3,056, https://doi.org/10.1029/93JB02039.
  67. Wilcock, W.S.D., and J.R. Delaney. 1996. Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts. Earth and Planetary Science Letters 145:49–64, https://doi.org/10.1016/S0012-821X(96)00195-1.
  68. Xu, M., J. Canales, H.D. Carton, S.M. Carbotte, M.R. Nedimović, and J.C. Mutter. 2010. 3D multi-channel seismic imaging of melt-rich lenses beneath and off the East Pacific Rise Integrated Study Site. Eos, Transactions, American Geophysical Union 90(52):Fall Meeting Abstract OS21C-1513.
  69. Zha, Y., S.L. Nooner, W.C. Crawford, and S.C. Webb. 2010. Modeling of 3D crustal shear structures from compliance measurements near East Pacific Rise 9°50’. Eos, Transactions, American Geophysical Union 90(52):Fall Meeting Supplement Abstract OS21C-1509.
  70. Zou, H., A. Zindler, and Y. Niu. 2002. Constraints on melt movement beneath the East Pacific Rise from 230Th–238U disequilibrium. Science 295:107–110, https://doi.org/10.1126/science.1064295.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.