Oceanography The Official Magazine of
The Oceanography Society
Volume 25 Issue 01

View Issue TOC
Volume 25, No. 1
Pages 113 - 115


Recent Advances in Multichannel Seismic Imaging for Academic Research in Deep Oceanic Environments

By Juan Pablo Canales , Hélène Carton, John C. Mutter, Alistair Harding , Suzanne M. Carbotte, and Mladen R. Nedimović  
Jump to
Citation References Copyright & Usage
First Paragraph

Academic research using marine multichannel seismic (MCS) methods to investigate processes related to Earth’s oceanic crust has made substantial advances in the last decade. These advances were made possible by access to state-of-the-art MCS acquisition systems, and by development of data processing and modeling techniques that specifically deal with the particularities of oceanic crustal structure and the challenges of subseafloor imaging in the deep ocean. Among these methods, we highlight multistreamer three-dimensional (3D) imaging, streamer refraction tomography, synthetic ocean bottom experiments (SOBE), and time-lapse (4D) studies.


Canales, J.P., H. Carton, J.C. Mutter, A. Harding, S.M. Carbotte, and M.R. Nedimović. 2012. Recent advances in multichannel seismic imaging for academic research in deep oceanic environments. Oceanography 25(1):113–115, https://doi.org/10.5670/oceanog.2012.09.


Arnulf, A.F., S.C. Singh, A.J. Harding, G.M. Kent, and W.C. Crawford. 2011. Strong seismic heterogeneity in Layer 2A near hydrothermal vents at the Mid-Atlantic Ridge. Geophysical Research Letters 38, L13320, https://doi.org/10.1029/2011GL047753.

Ben-Hadj-Ali, H., S. Operto, and J. Virieux. 2008. Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data. Geophysics 73(5):VE101–VE117, https://doi.org/10.1190/1.2957948.

Berryhill, J.R. 1979. Wave-equation datuming. Geophysics 44(8):1,329–1,344, https://doi.org/10.1190/1.1441010.

Canales, J.P. 2010. Small-scale structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30’N, from waveform tomography of multichannel seismic data. Geophysical Research Letters 37: L21305, https://doi.org/10.1029/2010GL044412.

Canales, J.P., B.E. Tucholke, M. Xu, J.A. Collins, and D.L. Dubois. 2008. Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes. Geochemistry, Geophysics, Geosystems 9(8), Q08002, https://doi.org/10.1029/2008GC002009.

Canales, J.P., H. Carton, M. Xu, M.R. Nedimović, S. Carbotte, and J.C. Mutter. 2010. Evidence from three-dimensional seismic reflection images for crustal magma bodies off the East Pacific Rise. Abstract OS13G-02 presented at the 2010 Fall Meeting, American Geophysical Union, San Francisco, California, December 13–17, 2010.

Carbotte, S.M., J.P. Canales, M.R. Nedimović, H. Carton, and J.C. Mutter. 2012. Recent seismic studies at the East Pacific Rise 8°20’–10°10’N and Endeavour Segment: Insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography 25(1):100–112, https://doi.org/10.5670/oceanog.2012.08.

Delescluse, M., M.R. Nedimović, and K.E. Louden. 2011. 2D Waveform tomography applied to long streamer MCS data from the Scotian slope. Geophysics 76(4):B151-B163, https://doi.org/10.1190/1.3587219.

Escartín, J., and J.P. Canales. 2011. Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow and ecosystems. Eos, Transactions, American Geophysical Union 92(4):31, https://doi.org/10.1029/2011EO040003.

Harding, A.J., G.M. Kent, D.K. Blackman, S. Singh, and J.P. Canales. 2007. A new method for MCS refraction data analysis of the uppermost section at a Mid-Atlantic Ridge core complex. Eos, Transactions, American Geophysical Union 88(52): Fall Meeting Supplement, Abstract S12A-03.

Henig, A.S., D.K. Blackman, A.J. Harding, G.M. Kent, and J.P. Canales. 2009. Seismic velocity variation within the footwall of an oceanic core complex: Atlantis Massif, Mid-Atlantic Ridge, 30°N. InterRidge Newsletter 18:9–12.

Kent, G.M., S.C. Singh, A.J. Harding, M.C. Sinha, J.A. Orcutt, P.J. Barton, R.S. White, S. Bazin, R.W. Hobbs, C.H. Tong, and J.W. Pye. 2000. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 406:614–618, https://doi.org/10.1038/35020543.

Lumley, D. 2001. Time-lapse seismic reservoir monitoring. Geophysics 66(1):50–53, https://doi.org/10.1190/1.1444921.

Mutter, J.C., H. Carton, M. Marjanovic, S. Carbotte, J.P. Canales, and M.R. Nedimović. 2010. Eruption-related changes in magma chamber structure at 9°50’N on the EPR from coincident reflection images, 1985 and 2008. Eos, Transactions, American Geophysical Union, Abstract OS24A-01.

Newman, K.R., M.R. Nedimović, J.P. Canales, and S.M. Carbotte. 2011. Evolution of seismic Layer 2B across the Juan de Fuca Ridge from hydrophone streamer 2-D traveltime tomography. Geochemistry, Geophysics, Geosystems 12, Q05009, https://doi.org/10.1029/2010GC003462.

Perfit, M.R., and W.W. Chadwick. 1998. Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations. Pp. 59–115 in Faulting and Magmatism at Mid-Ocean Ridges. W.R. Buck, P.T. Delaney, J.A. Karson, and Y. Lagabrielle, eds, American Geophysical Union, Washington, DC.

Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartín, and M.J. Miranda. 2006. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1,029-1,032, https://doi.org/10.1038/nature05105.

Xu, M., J.P. Canales, B.E. Tucholke, and D.L. Dubois. 2009. Heterogeneous seismic velocity structure of the upper lithosphere at Kane oceanic core complex, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 10, Q10001, https://doi.org/10.1029/2009GC002586.

Zelt, B.C., B. Taylor, J.R. Weiss, A.M. Goodliffe, M. Sachpazi, and A. Hirn. 2004. Streamer tomography velocity models for the Gulf of Corinth and Gulf of Itea, Greece. Geophysical Journal International 159:333–346, https://doi.org/10.1111/j.1365-246X.2004.02388.x.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.