Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 92 - 103

OpenAccess

Quantifying Sources and Transport Pathways of Surface Sediments in the Gulf of San Jorge, Central Patagonia (Argentina)

By Pierre-Arnaud Desiage , Jean-Carlos Montero-Serrano, Guillaume St-Onge, Augusto César Crespi-Abril, Erica Giarratano, Mónica Noemí Gil, and Miguel J. Haller 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

The Gulf of San Jorge (GSJ) is a semicircular basin, approximately 160 km long and 250 km wide, located in the central part of Patagonia between 45°S and 47°S, lacking any present-day major perennial tributaries. The grain size and bulk and clay mineralogical compositions as well as major and minor elements of 75 surface sediment samples from the GSJ and the adjacent continental shelf were investigated to define the spatial distribution, transport pathways, and potential sources of terrigenous material. To better constrain the origins of GSJ sediments, analyses were also performed on 14 terrestrial, riverine, and marine samples from potential source areas around the gulf and Patagonia. The mineral assemblage of surface sediments in the gulf, dominated by plagioclase, quartz, and clays, is a function of the primary continental volcanic geology of Patagonia. The significant concentration of volcaniclastic particles indicated by mineralogical signatures and scanning electron microscope images of sediments suggests a substantial contribution from rhyolitic volcanism to the modern sedimentation in the gulf. High amounts of smectite are carried into the GSJ by dust transport, whereas inputs of chlorite and illite seem to be associated with continental shelf current transport from southern Patagonia. Finally, our results suggest that 50% of the surface sediment in the GSJ is derived from external/oceanic inputs, 40% from inner gulf shores (i.e., erosion and runoff), and 10% from dust (i.e., aeolian transport).

Citation

Desiage, P.-A., J.-C. Montero-Serrano, G. St-Onge, A.C. Crespi-Abril, E. Giarratano, M.N. Gil, and M.J. Haller. 2018. Quantifying sources and transport pathways of surface sediments in the Gulf of San Jorge, central Patagonia (Argentina). Oceanography 31(4)92–103, https://doi.org/10.5670/oceanog.2018.401.

Supplementary Materials

METHODS. Contains the source samples and detailed methodology used for the analyses of grain size, SEM, bulk and clay mineralogy, and elemental geochemistry, as well as the statistical approach.

FIGURE S1. Spatial distribution of the mean grain-size for the surface sediments in (a) the Gulf of San Jorge (GSJ) and (b and c) marine park areas.

FIGURE S2. Spatial distribution of tephra (i.e., volcanic rhyolitic tephra) concentrations in the GSJ.

FIGURE S3. (a) Comparison of measured X-ray diffractogram and calculated best-fit curve obtained from RockJock v11 on a representative sample (BV01). The quartz and rhyolitic tephra (Hekla-4) standard used in the XRD analysis are also shown for comparison. (b–c) Scanning electron microscopy (SEM) images of the 300–63 μm fraction of surface sediment sample BV01. (d) K2O vs. SiO2 classification diagram for glass shards from BV01, BV06, and BC11 surface samples. The geochemical composition field of different volcanic provinces of the southern part of the SVZ (Carel et al., 2011, and references therein) and ashes from the 2008 Chaitén eruption (Watt et al., 2009; Ruggieri et al., 2012) are presented for comparison.

FIGURE S4. (a) Weight % Si plotted vs. weight % quartz. (b) Weight % Ca plotted vs. weight % plagioclase. (c) Weight % Al plotted vs. weight % clays. (d) Weight % Fe plotted vs. weight % Fe-bearing + chlorite + clays.

FIGURE S5. (a) Box plot illustrating the smectite (S), illite (I), and chlorite (C) relative concentrations of GSJ sediment samples as yielded by RockJock and oriented mounted methods (<2 μm; MacDiff). (b) Box plot of ratios S+I/C and S/I+C showing the relative clays compositions of GSJ sediment samples as yielded by RockJock and oriented mounted methods (<2 μm).

TABLE S1. Mean grain size and End-member (EM) scores for surface sediments of the Gulf of San Jorge (GSJ).

TABLE S2. Mineral composition of bulk and clay fraction of sediment samples.

TABLE S3. Chemical composition of sediment samples.

TABLE S4. Sources contributing to surface samples.

Table S5. (a) Minerals identified in RockJock v11, (b) consolidated list of minerals, (c) minerals used in SedUnMix, and (d) samples associated to sources in SedUnMix.

References
    Andrews, J., G. Kristjánsdóttir, D.D. Eberl, and A. Jennings. 2013. A quantitative x-ray diffraction inventory of volcaniclastic inputs into the marine sediment archives off Iceland: A contribution to the Volcanoes in the Arctic System programme. Polar Research 32(1):11130, https://doi.org/10.3402/polar.v32i0.11130.
  1. Andrews, J.T., and C. Vogt. 2014. Source to sink: Statistical identification of regional variations in the mineralogy of surface sediments in the western Nordic Seas (58°N–75°N; 10°W–40°W). Marine Geology 357:151–162, https://doi.org/10.1016/​j.margeo.2014.08.005.
  2. Bertrand, S., K.A. Hughen, J. Sepulveda, and S. Pantoja. 2012. Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44–47°S): Spatial variability and implications for paleoclimate reconstructions. Geochimica et Cosmochimica Acta 76:125–146, https://doi.org/​10.1016/​j.gca.2011.10.028.
  3. Corbella, H., and L.E. Lara. 2008. Late Cenozoic quaternary volcanism in Patagonia and Tierra del Fuego. Developments in Quaternary Sciences 11:95–119, https://doi.org/​10.1016/S1571-0866(07)10006-3.
  4. Coronato, A.M., F. Coronato, E. Mazzoni, and M. Vázquez. 2008. The physical geography of Patagonia and Tierra del Fuego. Developments in Quaternary Sciences 11:13–55, https://doi.org/​10.1016/S1571-0866(07)10003-8.
  5. Crespi-Abril, A.C., A.M.I. Montes, G.N. Williams, and M.F. Carrasco. 2016. Uso de sensores remotos para la detección de eventos de transporte eólico de sedimentos hacia ambientes marinos en Patagonia. Meteorologica 41(2):33–47.
  6. Crespi-Abril, A.C., G. Soria, A. De Cian, and C. López-Moreno. 2018. Roaring forties: An analysis of a decadal series of data of dust in Northern Patagonia. Atmospheric Environment 177:111–119, https://doi.org/10.1016/​j.atmosenv.2017.11.019.
  7. Cuitiño, J.I., R.A. Scasso, R. Ventura Santos, and L.H. Mancini. 2015. Sr ages for the Chenque Formation in the Comodoro Rivadavia region (Golfo San Jorge Basin, Argentina): Stratigraphic implications. Latin American Journal of Sedimentology and Basin Analysis 22(1):13–28.
  8. de Mahiques, M.M., C.C.G. Tassinari, S. Marcolini, R.A. Violante, R.C.L. Figueira, I.C.A. da Silveira, L. Burone, and S.H. de Mello e Sousa. 2008. Nd and Pb isotope signatures on the Southeastern South American upper margin: Implications for sediment transport and source rocks. Marine Geology 250(1):51–63, https://doi.org/​10.1016/​j.margeo.2007.11.007.
  9. Diekmann, B., G. Kuhn, V. Rachold, A. Abelmann, U. Brathauer, D.K. Fütterer, R. Gersonde, and H. Grobe. 2000. Terrigenous sediment supply in the Scotia Sea (Southern Ocean): Response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 162(3):357–387, https://doi.org/10.1016/S0031-0182(00)00138-3.
  10. Dominguez, E., C. Iglesias, and M. Dondi. 2008. The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Applied Clay Science 40(1):124–142, https://doi.org/10.1016/​j.clay.2007.07.009.
  11. Eberl, D.D. 2003. User Guide to RockJock-A Program for Determining Quantitative Mineralogy from X-Ray Diffraction Data. US Geological Survey, Open-File Report 03-78.
  12. Fernández, M., J.I. Carreto, J. Mora, and A. Roux. 2005. Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 85(6):1,317–1,328, https://doi.org/10.1017/S002531540501249X.
  13. Fernández, M., A. Roux, E. Fernández, J. Caló, A. Marcos, and H. Aldacur. 2003. Grain-size analysis of surficial sediments from Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 83(6):1,193–1,197, https://doi.org/10.1017/S0025315403008488.
  14. Gaiero, D.M., F. Brunet, J.-L. Probst, and P.J. Depetris. 2007. A uniform isotopic and chemical signature of dust exported from Patagonia: Rock sources and occurrence in southern environments. Chemical Geology 238:107–120, https://doi.org/10.1016/​j.chemgeo.2006.11.003.
  15. Gaiero, D.M., P.J. Depetris, J.-L. Probst, S.M. Bidart, and L. Leleyter. 2004. The signature of river-and wind-borne materials exported from Patagonia to the southern latitudes: A view from REEs and implications for paleoclimatic interpretations. Earth and Planetary Science Letters 219(3):357–376, https://doi.org/​10.1016/S0012-821X(03)00686-1.
  16. Gaiero, D.M., J.-L. Probst, P.J. Depetris, S.M. Bidart, and L. Leleyter. 2003. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochemica et Cosmochimica Acta 67(19):3,603–3,623, https://doi.org/​10.1016/S0016-7037(03)00211-4.
  17. Gamboa, A., J. Montero-Serrano, G. St-Onge, A. Rochon, and P.-A. Desiage. 2017. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic). Geochemistry, Geophysics, Geosystems 18(2):488–512, https://doi.org/​10.1002/​2016GC006477.
  18. Gut, B. 2008. Geology, climate and soils of Patagonia. Pp. 9–18 in Trees in Patagonia. Springer Science & Business Media.
  19. Herron, M.M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58(5):820–829, https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.
  20. Isla, F.I., N. Iantanos, and E. Estrada. 2002. Playas reflectivas y disipativas macromareales del Golfo San Jorge, Chubut. Revista de La Asociación Argentina de Sedimentología 9(2):155–164.
  21. Kilian, R., and F. Lamy. 2012. A review of glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quaternary Science Reviews 53:1–23, https://doi.org/10.1016/​j.quascirev.2012.07.017.
  22. Kokot, R.R. 2004. Erosión en la costa patagónica por cambio climático. Revista de La Asociación Geológica Argentina 59(4):715–726.
  23. López-Escobar, L., R. Kilian, P.D. Kempton, and M. Tagiri. 1993. Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41°30' and 46°00'S, Chile. Andean Geology, 20(1):33–55.
  24. Marinoni, L., M. Setti, and F. Soggetti. 1997. Mineralogy of sea-bottom sediments from the Strait of Magellan. Bolletino di Geofisica Teorica ed Applicata 38:281–292.
  25. Martínez, O.A., and A. Kutschker. 2011. The “Rodados Patagónicos” (Patagonian shingle formation) of eastern Patagonia: Environmental conditions of gravel sedimentation. Biological Journal of the Linnean Society 103(2):336–345, https://doi.org/​10.1111/​j.1095-8312.2011.01651.x.
  26. Montes, A., S.S. Rodríguez, and C.E. Domínguez. 2017. Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina. Aeolian Research 28:58–70, https://doi.org/​10.1016/j.aeolia.2017.08.001.
  27. Montes, A., S. Rodríguez, C. San Martín, and J. Allard. 2015. Migración de campos de dunas en cañadones costeros de Patagonia: Geomorfología e implicaciones paleoclimáticas. Revisita de la Sociedad Geologica de España 28(2):65–76.
  28. Nagai, R.H., P.A.L. Ferreira, S. Mulkherjee, M.V. Martins, R.C.L. Figueira, S.H.M. Sousa, and M.M. Mahiques. 2014. Hydrodynamic controls on the distribution of surface sediments from the southeast South American continental shelf between 23°S and 38°S. Continental Shelf Research 89:51–60, https://doi.org/10.1016/​j.csr.2013.09.016.
  29. Palma, E.D., R.P. Matano, and A.R. Piola. 2008. A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. Journal of Geophysical Research 113(C11), https://doi.org/​10.1029/2007JC004720.
  30. Pankhurst, R.J., P.T. Leat, P. Sruoga, C.W. Rapela, M. Márquez, B.C. Storey, and T.R. Riley. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province. Journal of Volcanology and Geothermal Research 81(1):113–136, https://doi.org/10.1016/S0377-0273(97)00070-X.
  31. Petschick, R., G. Kuhn, and F. Gingele. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Marine Geology 130(3):203–229, https://doi.org/​10.1016/0025-3227(95)00148-4.
  32. Pierce, J.W., and F.R. Siegel. 1979. Suspended particulate matter on the southern Argentine shelf. Marine Geology 29(1):73–91, https://doi.org/​10.1016/0025-3227(79)90103-8.
  33. Potter, P.E. 1994. Modern sands of South America: Composition, provenance and global significance. Geologische Rundschau 83(1):212–232, https://doi.org/​10.1007/BF00211904.
  34. Preda, M., and M.E. Cox. 2005. Chemical and mineralogical composition of marine sediments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. Journal of Marine Systems 53(1):169–186, https://doi.org/10.1016/​j.jmarsys.2004.05.003.
  35. Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics 40(1):2–31, https://doi.org/​10.1029/2000RG000095.
  36. Raigemborn, M., M. Brea, A. Zucol, and S. Matheos. 2009. Early Paleogene climate at mid latitude in South America: Mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geologica Acta: An International Earth Science Journal 7(1–2):125–145, https://doi.org/​10.1344/​105.000000269.
  37. Saukel, C., R. Stein, C. Vogt, and V.P. Shevchenko. 2010. Clay-mineral and grain-size distributions in surface sediments of the White Sea (Arctic Ocean): Indicators of sediment sources and transport processes. Geo-Marine Letters 30(6):605–616, https://doi.org/​10.1007/​s00367-010-0210-2.
  38. Spagnoli, F., G. Bartholini, E. Dinelli, and P. Giordano. 2008. Geochemistry and particle size of surface sediments of Gulf of Manfredonia (Southern Adriatic Sea). Estuarine, Coastal and Shelf Science 80(1):21–30, https://doi.org/10.1016/​j.ecss.2008.07.008.
  39. Sylwan, C.A. 2001. Geology of the Golfo San Jorge Basin, Argentina. Geología de la Cuenca del Golfo San Jorge, Argentina. Journal of Iberian Geology 27:123–158.
  40. Violante, R.A., C.M. Paterlini, S.I. Marcolini, I.P. Costa, J.L. Cavallotto, C. Laprida, W. Dragani, N.G. Chapori, S. Watanabe, and V. Totah. 2014. The Argentine continental shelf: Morphology, sediments, processes and evolution since the Last Glacial Maximum. Geological Society, London, Memoirs 41(1):55–68, https://doi.org/10.1144/M41.6.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.