Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 80 - 93


Processes Governing Giant Subduction Earthquakes: IODP Drilling to Sample and Instrument Subduction Zone Megathrusts

By Harold J. Tobin , Gaku Kimura, and Shuichi Kodaira 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Scientific ocean drilling from 2007 through 2018 has played a major role in an ongoing revolution in the understanding of plate boundary fault zone mechanics, structure, and associated megathrust earthquake processes and the tsunamis they create. Major efforts at the Nankai, Costa Rica, Sumatra, and Japan Trench subduction zones that have employed both the riser Japanese drillship Chikyu and the riserless US drillship JOIDES Resolution have sampled main plate boundary faults (décollements), associated splay faults, and incoming plate sediments and basement rocks that develop into the fault system. Research on these rocks and in the boreholes shows that great earthquake ruptures not only can slip all the way to the tip of the megathrust at the seafloor in some events but may well do so typically. One location on a plate boundary fault can apparently also exhibit a range of behaviors over the course of a seismic cycle, from slow slip and tremor to rapid coseismic slip, depending on state of stress, pore pressure, and acceleration interacting with intrinsic lithologic properties. Scientific ocean drilling has provided data and samples for laboratory tests of frictional mechanics, for numerical modeling of fault processes, and for testing new hypotheses on megathrust fault processes, thus playing a central role in the modern pursuit of the grand challenge of understanding how faults that are capable of generating giant subduction earthquakes work.


Tobin, H.J., G. Kimura, and S. Kodaira. 2019. Processes governing giant subduction earthquakes: IODP drilling to sample and instrument subduction zone megathrusts. Oceanography 32(1):80–93, https://doi.org/10.5670/oceanog.2019.125.


Ammon, C.J., C. Ji, H.K. Thio, D. Robinson, S.D. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, and others. 2005. Rupture process of the 2004 Sumatra-Andaman earthquake. Science 308:1,133–1,139, https://doi.org/10.1126/science.1112260.

Ando, M. 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics 27:119–140, https://doi.org/10.1016/0040-1951(75)90102-X.

Araki, E., D. Saffer, A. Kopf, L. Wallace, T. Kimura, Y. Machida, S. Ide, E. Davis, and IODP Expedition 365 Shipboard Scientists. 2017. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science 356(6343):1,157–1,160, https://doi.org/​10.1126/science.aan3120.

Arroyo, I.G., S. Husen, and E.R. Flueh. 2014. The seismogenic zone in the Central Costa Rican Pacific margin: High-quality hypocentres from an amphibious network. International Journal of Earth Sciences 103(7):1,747–1,764, https://doi.org/10.1007/s00531-013-0955-8.

Bangs, N.L., K.D. McIntosh, E.A. Silver, J.W. Kluesner, and C.R. Ranero. 2014. Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone. Journal of Geophysical Research 120:67–86, https://doi.org/​10.1002/2014JB011265.

Bangs, N.L., K.D. McIntosh, E.A. Silver, J.W. Kluesner, and C.R. Ranero. 2015. Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic Zone. Journal of Geophysical Research 120(1):67–86, https://doi.org/​10.1002/2014JB011265.

Bletery, Q., A. Sladen, J. Jiang, and M. Simons. 2016. A Bayesian source model for the 2004 great Sumatra-Andaman earthquake. Journal of Geophysical Research 121:5,116–5,135, https://doi.org/​10.1002/2016JB012911.

Briggs, R.W., K. Sieh, A.J. Meltzner, D. Natawidjaja, J. Galetzka, B. Suwargadi, Y.-j. Hsu, M. Simons, N. Hananto, I. Suprhanto, and others. 2006. Deformation and slip along the Sunda megathrust in the Great 2005 Nias-Simeulue Earthquake. Science 311(5769):1,897–1,901, https://doi.org/​10.1126/science.1122602.

Brodsky, E.E., and T. Lay. 2014. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science 344(6185):700–702, https://doi.org/10.1126/science.1255202.

Brown, K., M. Tryon, H. DeShon, L. Dorman, and S. Schwartz. 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters 238:189–203, https://doi.org/10.1016/​j.epsl.2005.06.055.

Chester, F.M., C. Rowe, K. Ujiie, J. Kirkpatrick, C. Regalla, F. Remitti, J.C. Moore, V. Toy, M. Wolfson-Schwehr, S. Bose, and others. 2013. Structure and composition of the plate-​boundary slip zone for the 2011 Tōhoku-oki earthquake. Science 342(6163):1,208–1,211, https://doi.org/​10.1126/science.1243719.

Cloos, M. 1992. Thrust-type subduction-zone earthquakes and seamount asperities: A physical model for seismic rupture. Geology 20(7):601–604, https://doi.org/10.1130/0091-7613(1992)020​<0601:​TTSZEA>2.3.CO;2.

Coffin, M.F., J.A. McKenzie, E. Davis, G. Dickens, K. Ellins, J. Erzinger, P. Huchon, A. Kemp, D. Rea, K. Suyehiro, and others. 2001. Earth, Oceans and Life: Scientific Investigation of the Earth System Using Multiple Drilling Platforms and New Technologies. Integrated Ocean Drilling Program Initial Science Plan, 110 pp., https://geo-prose.com/pdfs/iodp_init_sci_plan.pdf.

Davis, E., M. Heesemann, and K. Wang. 2011. Evidence for episodic aseismic slip across the subduction seismogenic zone off Costa Rica: CORK borehole pressure observations at the subduction prism toe. Earth and Planetary Science Letters 306:299–305, https://doi.org/10.1016/​j.epsl.2011.04.017.

Davis, E., M. Kinoshita, K. Becker, K. Wang, Y. Asano, and Y. Ito. 2013. Episodic deformation and inferred slow slip at the Nankai subduction zone during the first decade of CORK borehole pressure and VLFE monitoring. Earth and Planetary Science Letters 368:110–118, https://doi.org/10.1016/​j.epsl.2013.03.009.

Davis, E., H. Villiger, and T. Sun. 2015. Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica. Earth and Planetary Science Letters 410:117–127, https://doi.org/10.1016/j.epsl.2014.11.015.

Dean, S.M., L.C. McNeill, T.J. Henstock, J.M. Bull, S.P.S. Gulick, J.A. Austin, N.L.B. Bangs, Y.S. Djajadihardja, and H. Permana. 2010. Contrasting décollement and prism properties over the Sumatra 2004–2005 earthquake rupture boundary. Science 329(5988):207–210, https://doi.org/​10.1126/science.1189373.

DeMets, C., R.G. Gordon, and D.F. Argus. 2010. Geologically current plate motions. Geophysical Journal International 181(1):1–80, https://doi.org/​10.1111/j.1365-246X.2009.04491.x.

DeShon, H.R., S.Y. Schwartz, S.L. Bilek, L.M. Dorman, V. Gonzalez, J.M. Protti, E.R. Flueh, and T.H. Dixon. 2003. Seismogenic zone structure of the southern Middle America Trench, Costa Rica. Journal of Geophysical Research 108(B10), https://doi.org/​10.1029/2002JB002294.

DeShon, H.R., S.Y. Schwartz, A.V. Newman, V. González, M. Protti, L.M. Dorman, T.H. Dixon, D.E. Sampson, and E.R. Flueh. 2006. Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from three-dimensional local earthquake P- and S-wave tomography. Geophysical Journal International 164(1):109–124, https://doi.org/​10.1111/j.1365-246X.2005.02809.x.

Dominguez, S., J. Malavieille, and S.E. Lallemand. 2000. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics 19(1):182–196, https://doi.org/10.1029/1999TC900055.

Dugan, B., L.C. McNeill, K. Petronotis, and the Expedition 362 Scientists. 2017. Expedition 362 Preliminary Report: Sumatra Subduction Zone. International Ocean Discovery Program, College Station, TX, https://doi.org/10.14379/iodp.pr.362.2017.

Edwards, J.H., J.W. Kluesner, E.A. Silver, and N.L. Bangs. 2018. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction. Geosphere 14(2): 510–534, https://doi.org/​10.1130/GES01577.1.

Fujii, Y., K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa. 2011. Tsunami source of the 2011 off the Pacific coast of Tōhoku earthquake. Earth, Planets and Space 63(7):55, https://doi.org/​10.5047/eps.2011.06.010.

Fujiwara, T., S. Kodaira, T. No, Y. Kaiho, N. Takahashi, and Y. Kaneda. 2011. The 2011 Tōhoku-oki earthquake: Displacement reaching the trench axis. Science 334(6060):1,240, https://doi.org/10.1126/science.1211554.

Fulton, P.M., and E.E. Brodsky. 2016. In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone. Geology 44(10):851–854, https://doi.org/10.1130/G38034.1.

Fulton, P.M., E.E. Brodsky, Y. Kano, J. Mori, F. Chester, T. Ishikawa, R.N. Harris, W. Lin, N. Eguchi, S. Toczko, and the Expedition 343, 343T, and KR13-08 Scientists. 2013. Low coseismic friction on the Tōhoku-oki fault determined from temperature measurements. Science 342(6163):1,214–1,217, https://doi.org/10.1126/science.1243641.

Fulton P.M., and R.N. Harris. 2012. Thermal considerations in inferring frictional heating from vitrinite reflectance and implications for shallow coseismic slip within the Nankai subduction zone. Earth and Planetary Science Letters 335–336:206–215, https://doi.org/10.1016/j.epsl.2012.04.012.

Gulick, S.P.S., J.A. Austin Jr, L.C. McNeill, N.L.B. Bangs, K.M. Martin, T.J. Henstock, J.M. Bull, S. Dean, Y.S. Djajadihardja, and H. Permana. 2011. Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nature Geoscience 4:453–456, https://doi.org/10.1038/ngeo1176.

Haeussler, P.J., P.A. Armstrong, L.M. Liberty, K.M. Ferguson, S.P. Finn, J.C. Arkle, and T.L. Pratt. 2015. Focused exhumation along megathrust splay faults in Prince William Sound, Alaska. Quaternary Science Reviews 113:8–22, https://doi.org/10.1016/​j.quascirev.2014.10.013.

Harris, R.N., A. Sakaguchi, K. Petronotis, and the Expedition 344 Scientists. 2013. Costa Rica Seismogenesis Project, Program A Stage 2 (CRISP-A2). In Proceedings of the Integrated Ocean Drilling Program, vol. 344. College Station, TX, http://doi.org/10.2204/iodp.proc.344.2013.

Hasegawa, A., Y. Keisuke, and T. Okada. 2011. Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tōhoku Earthquake. Earth, Planets and Space 63:35, https://doi.org/10.5047/eps.2011.06.007.

Hammerschmidt, S., E.E. Davis, and A. Kopf. 2013. Fluid pressure and temperature transients detected at the Nankai Trough megasplay fault: Results from the SmartPlug borehole observatory. Tectonophysics 600:116–133, https://doi.org/​10.1016/j.tecto.2013.02.010.

Henstock, T.J., L.C. McNeill, and D.R. Tappin. 2006. Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology 34(6):485–488, https://doi.org/​10.1130/22426.1.

Hori, T., N. Kato, K. Hirahara, T. Baba, and Y. Kaneda. 2004. A numerical simulation of earthquake cycles along the Nankai trough, southwest Japan: Lateral variation in frictional property due to the slab geometry controls the nucleation position. Earth and Planetary Science Letters 228:215–226, https://doi.org/10.1016/j.epsl.2004.09.033.

Hubbert, M.K., and W.W. Rubey. 1959. Role of fluid pressure in mechanics of overthrust faulting. Geological Society of America Bulletin 70:115–166.

Hüpers, A., M.E. Torres, S. Owari, L.C. McNeill, B. Dugan, T.J. Henstock, K.L. Milliken, K.E. Petronotis, J. Backman, S. Bourlange, and others. 2017. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science 356(6340):841–844, https://doi.org/​10.1126/science.aal3429.

Ikari, M.J., A.R. Niemeijer, C.J. Spiers, A.J. Kopf, and D.M. Saffer. 2013. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology 41(8):891–894, https://doi.org/10.1130/G33956.1.

Kato, A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata. 2012. Propagation of slow slip leading up to the 2011 Mw 9.0 Tōhoku-oki earthquake. Science 335:705–708, https://doi.org/​10.1126/science.1215141.

Kitajima, H., and D.M. Saffer. 2012. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophysical Research Letters 39(23), https://doi.org/​10.1029/​2012GL053793.

Kodaira, S., T. No, Y. Nakamura, T. Fujiwara, Y. Kaiho, S. Miura, N. Takahashi, Y. Kaneda, and A. Taira. 2012. Coseismic fault rupture at the trench axis during the 2011 Tōhoku-oki earthquake. Nature Geoscience 5(9):646–650, https://doi.org/10.1038/ngeo1547.

Kopf, A., D. Saffer, S. Toczko, and the Expedition 365 Scientists. 2016. International Ocean Discovery Program Expedition 365 Preliminary Report: NanTroSEIZE Stage 3: Shallow Megasplay Long-Term Borehole Monitoring System (LTBMS),

Lay, T., C.J. Ammon, H. Kanamori, L. Xue, and M.J. Kim. 2011. Possible large near-trench slip during the 2011 M9.0 off the Pacific coast of Tōhoku earthquake. Earth, Planets and Space 63(7):32, https://doi.org/10.5047/eps.2011.05.033.

Lin, W., M. Conin, J.C. Moore, F.M. Chester, Y. Nakamura, J.J. Mori, L. Anderson, E.E. Brodsky, N. Eguchi, and Expedition 343 Scientists. 2013. Stress state in the largest displacement area of the 2011 Tōhoku-oki earthquake. Science 339(6120):687–690, https://doi.org/10.1126/science.1229379.

Mabuchi, K., K. Tanaka, D. Uchijima, and R. Sakai. 2012. Frictional coefficient under banana skin. Tribology Online 7:147–151, https://doi.org/10.2474/trol.7.147.

McNeill, L.C., B. Dugan, J. Backman, K.T. Pickering, H.F.A. Pouderoux, T.J. Henstock, K.E. Petronotis, A. Carter, F. Chamale Jr, K.L. Milliken, and others. 2017. Understanding Himalayan erosion and the significance of the Nicobar Fan. Earth and Planetary Science Letters 475:134–142, https://doi.org/​10.1016/​j.epsl.2017.07.019.

Moeremans, R., S.C. Singh, M. Mukti, J. McArdle, and K. Johansen. 2014. Seismic images of structural variations along the deformation front of the Andaman–Sumatra subduction zone: Implications for rupture propagation and tsunamigenesis. Earth and Planetary Science Letters 386:75–85, https://doi.org/10.1016/j.epsl.2013.11.003.

Moore, G.F., J.-O. Park, N.L. Bangs, S.P. Gulick, H.J. Tobin, Y. Nakamura, S. Sato, T. Tsuju, T. Yoro, H. Tanaka, and others. 2009. Structural and seismic stratigraphic framework of the NanTroSEIZE Stage 1 transect. In Proceedings of the Integrated Ocean Drilling Program, vol. 314/315/316. M. Kinoshita, H. Tobin, J. Ashi, G. Kimura, S. Lallemant, E.J. Screaton, D. Curewitz, H. Masago, K.T. Moe, and the Expedition 314/315/316 Scientists. Integrated Ocean Drilling Program Management International, Washington, DC, https://doi.org/​10.2204/​iodp.proc.314315316.102.2009.

Mori, J., F.M. Chester, E.E. Brodsky, and S. Kodaira. 2014. Investigation of the huge tsunami from the 2011 Tōhoku-oki, Japan, earthquake using ocean floor boreholes to the fault zone. Oceanography 27(2):132–137, https://doi.org/​10.5670/oceanog.2014.48.

Mori, N., and T. Takahashi. 2012. Nationwide post event survey and analysis of the 2011 Tōhoku earthquake tsunami. Coastal Engineering Journal 54(01):1250001, https://doi.org/10.1142/S0578563412500015.

Nakamura, Y., S. Kodaira, B.J. Cook, T. Jeppson, T. Kasaya, Y. Yamamoto, Y. Hashimoto, M. Yamaguchi, K. Obana, and G. Fujie. 2014. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: Low V p, high V p/V s in the transparent frontal prism. Earth, Planets and Space 66(1):121, https://doi.org/​10.1186/1880-5981-66-121.

Park, J.-O, T. Tsuru, S. Kodaira, P.R. Cummins, and Y. Kaneda. 2002. Splay fault branching along the Nankai subduction zone. Science 297(5584):1,157–1,160, https://doi.org/​10.1126/science.1074111.

Park, J.-O., G. Fujie, L. Wijerathne, T. Hori, S. Kodaira, Y. Fukao, G.F. Moore, N.L. Bangs, S. Kuramoto, and A. Taira. 2010. A low-velocity zone with weak reflectivity along the Nankai subduction zone. Geology 38(3):283–286, https://doi.org/10.1130/G30205.1.

Protti, M., K. McNally, J. Pacheco, V. González, C. Montero, J. Segura, J. Brenes, V. Barboza, E. Malavassi, F. Güendel, and others. 1995. The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity. Journal of Geophysical Research 100(B10):20,345–20,358, https://doi.org/​10.1029/94JB03099.

Saffer, D.M., and H.J. Tobin. 2011. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annual Review of Earth and Planetary Science 39(1):157–186, https://doi.org/​10.1146/annurev-earth-040610-133408.

Sakaguchi, A., F. Chester, D. Curewitz, O. Fabbri, D. Goldsby, G. Kimura, C.-F. Li, Y. Masaki, E.J. Screaton, A. Tsutsumi, and others. 2011. Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTroSEIZE cores. Geology 39(4):395–398, https://doi.org/10.1130/G31642.1.

Sato, M., T. Ishikawa, N. Ujihara, S. Yoshida, M. Fujita, M. Mochizuki, and A. Asada. 2011. Displacement above the hypocenter of the 2011 Tōhoku-oki earthquake. Science 332(6036):1,395–1,395, https://doi.org/​10.1126/science.1207401.

Scholz, C.H., and C. Small. 1997. The effect of seamount subduction on seismic coupling. Geology 25(6):487–490, https://doi.org/​10.1130/​0091-​7613​(1997)025​<0487:TEOSSO>2.3.CO;2.

Screaton, E., G. Kimura, D. Curewitz, G. Moore, F. Chester, O. Fabbri, C. Fergusson, F. Girault, D. Goldsby, R. Harris, and others. 2009. Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007. Geochemistry, Geophysics, Geosystems 10(12), https://doi.org/10.1029/2009GC002713.

Singh, S.C., H. Carton, P. Tapponnier, N.D. Hananto, A.P.S. Chauhan, D. Hartoyo, M. Bayly, S. Moeljopranoto, T. Bunting, P. Christie, and others. 2008. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience 1:771–781, https://www.nature.com/​articles/​ngeo336.

Stein, S., and E.A. Okal. 2005. Seismology: Speed and size of the Sumatra earthquake. Nature 434(7033):581–582, https://doi.org/​10.1038/434581a.

Sugioka, H., T. Okamoto, T. Nakamura, Y. Ishihara, A. Ito, K. Obana, M. Kinoshita, K. Nakahigashi, M. Shinohara, and Y. Fukao. 2012. Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geoscience 5(6):414–418, https://doi.org/10.1038/ngeo1466.

Tobin, H., P. Henry, P. Vannucchi, and E. Screaton. 2014. Subduction zones: Structure and deformation history. Pp. 599–640 in Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein, D.K. Blackman, F. Inagaki, and H.-C. Larsen, eds, Developments in Marine Geology, vol. 7, Elsevier, https://doi.org/10.1016/B978-0-444-62617-2.00020-7.

Ujiie, K., H. Tanaka, T. Saito, A. Tsutsumi, J.J. Mori, J. Kameda, E.E. Brodsky, F.M. Chester, N. Eguchi, S. Toczko, and Expedition 343 and 343T Scientists. 2013. Low coseismic shear stress on the Tōhoku-oki megathrust determined from laboratory experiments. Science 342(6163):1,211–1,214, https://doi.org/​10.1126/science.1243485.

Ujiie, K., and G. Kimura. 2014. Earthquake faulting in subduction zones: Insights from fault rocks in accretionary prisms. Progress in Earth and Planetary Science 1(1):7, https://doi.org/​10.1186/2197-4284-1-7.

Underwood, M.B., and G.F. Moore. 2012. Evolution of sedimentary environments in the subduction zone of Southwest Japan: Recent results from the NanTroSEIZE Kumano Transect. Pp. 310–328 in Tectonics of Sedimentary Basins. C. Busby and A. Azor, eds, John Wiley & Sons Ltd., Chichester, UK, https://doi.org/10.1002/9781444347166.ch15.

Vannucchi, P., D.W. Scholl, M. Meschede, and K. McDougall-Reid. 2001. Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: Combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics 20(5):649–668, https://doi.org/10.1029/2000TC001223.

Vannucchi, P., P.B. Sak, J.P. Morgan, K. Ohkushi, and K. Ujiie. 2013. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology 41(9):995–998, https://doi.org/​10.1130/​G34355.1.

Vannucchi, P., J.P. Morgan, E.A. Silver, and J.W. Kluesner. 2016. Origin and dynamics of depositionary subduction margins. Geochemistry, Geophysics, Geosystems 17(6):1,966–1,974, https://doi.org/10.1002/2016GC006259.

Vannucchi, P., E. Spagnuolo, S. Aretusini, G. Di Toro, K. Ujiie, A. Tsutsumi, and S. Nielsen. 2017. Past seismic slip-to-the-trench recorded in Central America megathrust. Nature Geoscience 10(12):935–940, https://doi.org/10.1038/s41561-017-0013-4.

Wallace, L.M., M.J. Ikari, D.M. Saffer, and H. Kitajima. 2019. Slow motion earthquakes: Taking the pulse of slow slip with scientific ocean drilling. Oceanography 32(1):106–118, https://doi.org/​10.5670/oceanog.2019.131.

Wang, K., and S.L. Bilek. 2011. Do subducting seamounts generate or stop large earthquakes? Geology 39(9):819–822, https://doi.org/10.1130/G31856.1.

Yamaguchi, A., A. Sakaguchi, T. Sakamoto, K. Iijima, J. Kameda, G. Kimura, K. Ujiie, F.M. Chester, O. Fabbri, D. Goldsby, and others. 2011. Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough. Geology 39(11):995–998, https://doi.org/​10.1130/G32038.1.

Yokota, Y., T. Ishikawa, S. Watanabe, T. Tashiro, and A. Asada. 2016. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 534(7607):374–377, https://doi.org/10.1038/nature17632.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.