Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 146 - 159

OpenAccess

Potential Interactions Among Ocean Acidification, Coccolithophores, and the Optical Properties of Seawater

William M. Balch Paul E. Utgoff
Article Abstract

The effects of ocean acidification (OA) are expected to be manifest over a broad range of spatial and temporal scales throughout the world ocean as the pH drops from the pre-industrial value of 8.2 to 7.8 by the year 2100. Calcifying plankton (like other biocalcifiers such as corals and shellfish) are expected to be strongly affected by OA because of their need for saturating carbonate conditions, which enables precipitation of calcium carbonate. Within the calcifying plankton, coccolithophores precipitate the smallest calcium carbonate particles (coccoliths), which are some of the strongest light-scattering particles in the sea. Thus, anything that will affect coccolithophore calcification (including OA) will likely affect the optical properties of the sea. Here, we describe the optical properties of coccolithophores and interpret some historical observations within the context of OA. Then, we discuss technologies that are available to measure optical properties of coccolithophores, and also how we could exploit coccolithophore optical properties to measure impacts of OA at different scales. We end with a discussion of the consequences (both optical and biogeochemical) of a “decalcified” surface ocean.

Citation

Balch, W.M., and P.E. Utgoff. 2009. Potential interactions among ocean acidification, coccolithophores, and the optical properties of seawater. Oceanography 22(4):146–159, https://doi.org/10.5670/oceanog.2009.104.

References

Ackleson, S., W.M. Balch, and P.M. Holligan. 1988. White waters of the Gulf of Maine. Oceanography 1(2):18–22. Available online at: http://tos.org/oceanography/issues/issue_archive/1_2.html (accessed November 11, 2009).

Archer, D., and E. Maier-Reimer. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263.

Armstrong, R.A., C. Lee, J.I. Hedges, S. Honjo, and S.G. Wakeham. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Research Part II 49:219–236.

Babin, M., D. Stramski, G.M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research 108(C7), 3211, doi:10.1029/2001JC000882.

Balch, W.M., and V.J. Fabry. 2008. Ocean acidification: Documenting its impact on calcifying phytoplankton at basin scales. Marine Ecology Progress Series 373:239–247.

Balch, W.M., D.T. Drapeau, B.C. Bowler, and E. Booth. 2007. Prediction of pelagic calcification rates using satellite-measurements. Deep -Sea Research Part II (Chapman Calcification Conference Special Volume) 54:478–495.

Balch, W.M., D.T. Drapeau, B.C. Bowler, E.S. Booth, L.A. Windecker, and A. Ashe. 2008. Space-time variability of carbon standing stocks and fixation rates in the Gulf of Maine, along the GNATS transect between Portland, ME and Yarmouth, NS. Journal of Plankton Research 30:119–139.

Balch, W.M., D.T. Drapeau, T.L. Cucci, R.D. Vaillancourt, K.A. Kilpatrick, and J.J. Fritz. 1999. Optical backscattering by calcifying algae—Separating the contribution by particulate inorganic and organic carbon fractions. Journal of Geophysical Research 104:1,541–1,558.

Balch, W.M., D. Drapeau, J. Fritz, B. Bowler, and J. Nolan. 2001. Optical backscattering in the Arabian Sea: Continuous underway measurements of particulate inorganic and organic carbon. Deep Sea Research Part I 48:2,423–2,452.

Balch, W.M., R.W. Eppley, M.R. Abbott, and F.M.H. Reid. 1989. Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates. Journal of Plankton Research 11:575–581.

Balch, W.M., H.R. Gordon, B.C. Bowler, D.T. Drapeau, and E.S. Booth. 2005. Calcium carbonate budgets in the surface global ocean based on MODIS data. Journal of Geophysical Research 110, C07001, doi:10.1029/2004JC002560.

Balch, W.M., P.M. Holligan, S.G. Ackleson, and K.J. Voss. 1991. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and Oceanography 36:629–643.

Balch, W.M., K. Kilpatrick, P.M. Holligan, D. Harbour, and E. Fernandez. 1996a. The 1991 coccolithophore bloom in the central north Atlantic. II. Relating optics to coccolith concentration. Limnology and Oceanography 41:1,684–1,696.

Balch, W.M., K.A. Kilpatrick, P.M. Holligan, and C. Trees. 1996b. The 1991 coccolithophore bloom in the central north Atlantic. I. Optical properties and factors affecting their distribution. Limnology and Oceanography 41:1,669–1,683.

Bates, N.R., A.F. Michaels, and A.H. Knap. 1996. Alkalinity changes in the Sargasso Sea: Geochemical evidence of calcification? Marine Chemistry 51:347–358.

Beaufort, L. 2005. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51:289–298.

Beaufort, L., and D. Dollfus. 2004. Automatic recognition of coccoliths by dynamical neural networks. Marine Micropaleontology 51:57–73.

Benner, R. 1997. Cycling of dissolved organic matter in the ocean. Pp. 317–332 (Chapter 12) in Aquatic Humic Substances: Ecology and Biogeochemistry. D. Hessen and L. Travik, eds., Springer-Verlag, New York.

Berge, G. 1962. Discoloration of the sea due to Coccolithus huxleyi “bloom.” Sarsia 6:27–40.

Bernhard, J.M., J.P. Barry, K.R. Buck, and V.R. Starczak. 2009a. Impact of intentionally injected carbon dioxide hydrate on deep-sea benthic foraminiferal survival. Global Change Biology 15:2,078–2,088.

Bernhard, J.M., E. Mollo-Christensen, N. Eisenkolb, and V.R. Starczak. 2009b. Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations: Implications to future ecosystem functioning and paleoceanographic interpretations. Global and Planetary Change 65:107–114.

Bishop, J.K.B. 2009. Autonomous observations of the ocean biological carbon pump. Oceanography 22(2):182–193. Available online at: http://tos.org/oceanography/issues/issue_archive/22_2.html (accessed November 11, 2009).

Broecker, W.S., A. Sanyal, and T. Takahashi. 2000. The origin of Bahamian whitings revisited. Geophysical Research Letters 27:3,759–3,760.

Brown, C.W., and J.A. Yoder. 1993. Blooms of Emiliania huxleyi (Prymnesiophyceae) in surface waters of the Nova Scotian Shelf and the Grand Bank. Journal of Plankton Research 15:1,429–1,438.

Brown, C.W., and J.A. Yoder. 1994. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research 99:7,467–7,482.

Costello, D.K., K.L. Carder, and W.L. Hou. 1995. Aggregation of diatom bloom in a mesocosm: Bulk and individual particle optical measurements. Deep-Sea Research Part II 42:29–45.

De Moel, H., G.M. Ganssen, F.J.C. Peeters, S.J.A. Jung, G.J.A. Brummer, D. Kroon, and R.E. Zeebe. 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences Discussions 6:1,811–1,835.

Edvardsen, B., W. Eikrem, J.C. Green, R.A. Andersen, S.Y. Moon-Van der Staay, and L.K. Medlin. 2000. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39:19–35.

Engel, A., L. Abramson, J. Szlosek, Z. Liu, G. Stewart, D. Hirschberg, and C. Lee. 2009. Investigating the effect of ballasting by CaCO3 in Emiliania huxleyi. II. Decomposition of particulate organic matter. Deep Sea Research Part II 56:1,408–1,419.

Engel, A., B. Delille, S. Jacquet, U. Riebesell, E. Rochelle-Newall, A. Terbruggen, and I. Zondervan. 2004. Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: A mesocosm experiment. Aquatic Microbial Ecology 34:93–104.

Eppley, R.W., and B. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680.

Fabry, V.J. 1989. Aragonite production by pteropod mollusks in the subarctic Pacific. Deep-Sea Research Part I 36:1,735–1,751.

Fabry, V.J., and W.G. Deuser. 1991. Aragonite and magnesian calcite fluxes to the deep Sargasso Sea. Deep-Sea Research 38:713–728.

Feely, R.A., C. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1,490–1,492.

Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366.

Feeley, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.

Fevre, J.L., M. Viollier, P.L. Corre, C. Dupouy, and J.R. Grall. 1983. Remote sensing observations of biological material by Landsat along a tidal thermal front and their relevancy to the available field data. Estuarine, Coastal and Shelf Science 16:37–50.

Francois, R., S. Honjo, R. Krishfield, and S. Manganini. 2002. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles 16, doi:10.1029/2001GB001722.

Gordon, H.R. 1989. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water? Limnology and Oceanography 34:1,389–1,409.

Gordon, H.R., and T. Du. 2001. Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi. Limnology and Oceanography 46:1,438–1,454.

Gordon, H.R., and A.Y. Morel. 1983. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review. Springer-Verlag, New York, 114 pp.

Gordon, H.R., G.C. Boynton, W.M. Balch, S.B. Groom, D.S. Harbour, and T.J. Smyth. 2001. Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. Geochemical Research Letters 28:1,587–1,590.

Groom, S., and P.M. Holligan. 1987. Remote sensing of coccolithophore blooms. Advances in Space Research 7:73–78.

Guay, C.K.H., and J.K.B. Bishop. 2002. A rapid birefingence method for measuring suspended CaCO3 concentration in seawater. Deep Sea Research Part I 49:197–210.

Haidar, A.T., and H.R. Thierstein. 2001. Coccolitho-phore dynamics off Bermuda (N. Atlantic). Deep Sea Research 48:1,925–1,956.

Holligan, P.M., E. Fernandez, J. Aiken, W. Balch, P. Boyd, P. Burkill, M. Finch, S. Groom, G. Malin, K. Muller, and others. 1993. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the north Atlantic. Global Biogeochemical Cycles 7:879–900.

Holligan, P.M., M. Viollier, D.S. Harbout, P. Camus, and M. Champagne-Philippe. 1983. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342.

Honjo, S., J. Dymond, W. Prell, and V. Ittekkot. 1999. Monsoon-controlled export fluxes to the interior of the Arabian Sea. Deep-Sea Research II 46:1,859–1,902.

Iglesias-Rodriguez, M.D., P.R. Halloran, R.E.M. Rickaby, I.R. Hall, E. Colmenero-Hidalgo, J.R. Gittins, D.R.H. Green, T. Tyrrell, S.J. Gibbs, P. von Dassow, and others. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336–340.

Joint, I., D.M. Karl, S.C. Doney, E.V. Armbrust, W.M. Balch, M. Beman, C. Bowler, M. Church, A. Dickson, J. Heidelbergh, and others. 2009. Consequences of High CO2 and Ocean Acidification for Microbes in the Global Ocean. Plymouth Marine Laboratory and Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, 23 pp.

Klaas, C., and D.E. Archer. 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 16, doi:10.1029/2001GB001765.

Mague, T.H., E. Friberg, D.J. Hughes, and I. Morris. 1980. Extracellular release of carbon by marine phytoplankton: A physiological approach. Limnology and Oceanography 25:262–279.

Matrai, P.A., and M.D. Keller. 1993. Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine. Continental Shelf Research 13:831–843.

Milliman, J., P.J. Troy, W. Balch, A.K. Adams, Y.-H. Li, and F.T. MacKenzie. 1999. Biologically-mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Research Part I 46:1,653–1,669.

Mobley, C.D. 1994. Light and Water: Radiative Transfer in Natural Waters. Academic Press, New York, 592 pp.

Moore, J.K., S.C. Doney, D.M. Glover, and I.Y. Fung. 2002. Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Sea Research Part II 49:463–507.

Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case 1 waters). Journal of Geophysical Research 93:10,749–10,768.

Morse, J.W., and S. He. 1993. Influences of T, S and pCO2 on the pseudo-homogeneous precipitation of CaCO3 from seawater: Implications for whiting formation. Marine Chemistry 41:291–297.

Morse, J.W., and F.T. Mackenzie. 1990. Geochemistry of Sedimentary Carbonates. Elsevier Scientific Publishing Co., New York, 696 pp.

Moshkovitz, S., and K. Osmond. 1989. The optical properties and microcrystallography of Arkhangelskiellaceae and some other calcareous nanofossils in the Late Cretaceous. Pp. 76–97 in Nanofossils and Their Applications. J.A. Crux and S.E. van Heck, eds, Ellis Horwood, Chichester.

Mueller, J.L., A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z.P. Lee, R.G. Steward, S.B. Hooker, C.D. Mobley, and others. 2003. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, rev. 4, vol. III: Radiometric Measurements and Data Analysis Protocols. Goddard Space Flight Center, Greenbelt, MD, 78 pp.

Napp, J.M., and G.L.J. Hunt. 2001. Anomalous conditions in the south-eastern Bering Sea 1997: Linkages among climate, weather, ocean and biology. Fisheries Oceanography 10:61–68.

Riebesell, U. 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography 60:719–729.

Riebesell, U., R.G.J. Bellerby, A. Engel, V.J. Fabry, D.A. Hutchins, T.B.H. Reusch, K.G. Schulz, and F.M.M. Morel. 2008. Comment on “Phytoplankton calcification in a high-CO2 world.” Science 322(5907):1,466, doi:10.1126/science.1161096.

Riebesell, U., I. Zondervan, B. Rost, P.D. Tortell, R.E. Zeebe, and F.M.M. Morel. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–366.

Robertson, J.E., C. Robinson, D.R. Turner, P. Holligan, A.J. Watson, P. Boyd, E. Fernandez, and M. Finch. 1994. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep Sea Research Part I 41:297–314.

Roesler, C.S., and M.J. Perry. 1989. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnology and Oceanography 34:1,510–1,523.

Smyth, T.J., G.F. Moore, S.B. Groom, P.E. Land, and T. Tyrrell. 2002. Optical modeling and measurements of a coccolithophore bloom. Applied Optics 41:7,679–7,688.

Spinrad, R.W., and J.F. Brown. 1986. Relative real refractive index of marine microorganisms: A technique for flow cytometric estimation. Applied Optics. 25:1,930–1,934.

Stockwell, D.A., T.E. Whitledge, T. Rho, P.J. Stabeno, K.O. Coyle, J.M. Napp, S.I. Zeeman, and G.L. Hunt. 2000. Field observations in the Southeastern Bering Sea during three years with extensive coccolithophorid blooms. Paper presented at AGU/ASLO Ocean Sciences Meeting, January 24–28, 2000, San Antonio, Texas. Eos, Transactions, American Geophysical Union 80: OS41.

Stramski, D., R.A. Reynolds, M. Babin, S. Kaczmarek, M.R. Lewis, R. Rottgers, A. Sciandra, M. Stramska, M. Twardowski, and H. Claustre. 2007. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic oceans. Biogeosciences Discussions 4:3,453–3,530.

Sukhanova, I.N., and M.V. Flint. 1998. Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology 38:502–505.

Twardowski, M.S., E. Boss, J.B. Macdonald, W.S. Pegau, A.H. Barnard, and J.R.V. Zaneveld. 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research 106:129–14.

Tyrrell, T., P.M. Holligan, and C.D. Mobley. 1999. Optical impacts of oceanic coccolithophore blooms. Journal of Geophysical Research 104:3,223–3,241.

Van de Hulst, H.C. 1981. Light Scattering By Small Particles. Dover publications, Mineola, NY, 470 pp.

Voss, K., W.M. Balch, and K.A. Kilpatrick. 1998. Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths. Limnology and Oceanography 43:870–876.

Wingenter, O.W., K.B. Haase, M. Zeigler, D.R. Blake, F.S. Rowland, B.C. Sive, A. Paulino, R. Thyrhaug, A. Larsen, K. Schulz, and others. 2007. Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophysical Research Letters 34, L05710, doi:10.1029/2006GL028139.

Wollast, R. 1994. The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle. Pp. 13–35 in Bulletin de lInstitut Oceanographique, Special Vol. No. 13. F. Doumenge, D. Allemand, and A. Toulemont, eds, Musée Oceanographique, Monaco.

Yentsch, C.S. 1980. Light attenuation and phytoplankton photosynthesis. Pp. 95–127 in The Physiological Ecology of Phytoplankton. I. Morris, ed., University of California Press, Berkeley, CA.

Yoshimura, T., J. Nishioka, K. Suzuki, H. Hattori, H. Kiyosawa, and Y.W. Watanabe. 2009. Impacts of elevated CO2 on phytoplankton community composition and organic carbon dynamics in nutrient-depleted Okhotsk Sea surface waters. Biogeosciences Discussions 6:4,143–4,163.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.