Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 04

View Issue TOC
Volume 31, No. 4
Pages 70 - 80

OpenAccess

Phytoplankton Ecology During a Spring-Neap Tidal Cycle in the Southern Tidal Front of San Jorge Gulf, Patagonia

By Ximena Flores-Melo , Irene R. Schloss, Cédric Chavanne, Gastón O. Almandoz, Maité Latorre, and Gustavo A. Ferreyra 
Jump to
Article Abstract Citation Supplementary Materials References Copyright & Usage
Article Abstract

Tidal fronts are interfaces that separate stratified from mixed waters. The stratified surface zone of a front has lower inorganic nutrient concentrations than the mixed side, and thus, phytoplankton assemblages are expected to differ from one side of the front to the other. Here, we characterize the physics, nutrient dynamics, and biology of the southern front in San Jorge Gulf (SJG), Argentina, during a spring-neap tidal cycle. Baroclinic instabilities influence the shape and position of the front and presumably play an important role in the horizontal transport across the front. The highest phytoplankton biomass concentrations were found in the waters of the stratified side of the front during neap tide, with picophytoplankton, cyanobacteria, and nanophytoplankton being the main contributors to the total autotrophic biomass. Bacteria contribute the most to heterotrophic biomass. In contrast, during spring tide, the carbon contribution of microphytoplankton was higher than during neap tide. In the mixed side, cells photoacclimate to optimum light conditions, suggesting that cells near the surface, which are probably photoinhibited, and cells below the euphotic zone, which are light-limited, are quickly advected by turbulent vertical motions to depths with optimal irradiance conditions.

Citation

Flores-Melo, X., I.R. Schloss, C. Chavanne, G.O. Almandoz, M. Latorre, and G.A. Ferreyra. 2018. Phytoplankton ecology during a spring-neap tidal cycle in the southern tidal front of San Jorge Gulf, Patagonia. Oceanography 31(4):70–80, https://doi.org/10.5670/oceanog.2018.412.

Supplementary Materials
References
    Acha, E.M., A. Piola, O. Iribarne, and H. Mianzan. 2015. Ecological Processes at Marine Fronts: Oases in the Ocean. Springer International Publishing, 68 pp.
  1. Akselman, R. 1996. Estudios ecológicos en el Golfo San Jorge y adyacencias (Atlántico Sudoccidental): Distribución, abundancia y variación estacional del fitoplancton en relación a factores Físico-químicos y la dinámica hidrológica. PhD dissertation, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
  2. Barros, V.R. 1983. Atlas del potencial eólico de la Patagonia. Biblioteca Centro Nacional Patagonico Contribución 69, Argentina, 171 pp.
  3. Belzile, C., and M. Gosselin. 2015. Free-living stage of the unicellular algae Coccomyxa sp. parasite of the blue mussel (Mytilus edulis): Low-light adaptation, capacity for growth at a very wide salinity range and tolerance to low pH. Journal of Invertebrate Pathology 132:201–207, https://doi.org/10.1016/​j.jip.2015.10.006.
  4. Bertilsson, S., O. Berglund, D.M. Karl, and S.W. Chisholm. 2003. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology and Oceanography 48(5):1,721–1,731, https://doi.org/​10.4319/lo.2003.48.5.1721.
  5. Borsheim, K.Y., and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36:171–175, https://doi.org/10.3354/meps036171.
  6. Caron, D.A., H.G. Dam, P. Kremer, E.J. Lessard, L.P. Madin, T.C. Malone, J.M. Napp, E.R. Peele, M.R. Roman, and M.J. Youngbluth. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Research Part I 42(6):943–972, https://doi.org/​10.1016/0967-0637(95)00027-4.
  7. Carreto, J. I., N.G. Montoya, M.O. Carignan, R. Akselman, E.M. Acha, and C. Derisio. 2016. Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front: Degraded fucoxanthin pigments and the importance of microzooplankton grazing. Progress in Oceanography 146:1–21, https://doi.org/​10.1016/​j.pocean.2016.05.002.
  8. Copin-Montegut, C., and G. Copin-Montegut. 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Research Part A 30(1):31–46, https://doi.org/​10.1016/0198-0149(83)90031-6.
  9. Cucchi-Colleoni, D.A., and J.I. Carreto. 2001. Variación estacional de la biomasa fitoplanctónica en el Golfo San Jorge. Resultados de las Campañas de Investigación OB-01/00, OB-03/00, OB-07/00, OB-10/00 y OB-12/00. Instituto Nacional de Desarrollo Pesquero, Argentina, 30 pp.
  10. Fernández, M., J.I. Carreto, J. Mora, and A. Roux. 2005. Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. Journal of the Marine Biological Association of the United Kingdom 85(6):1,317–1,328, https://doi.org/10.1017/S002531540501249X.
  11. Fernández, M., J. Mora, A. Roux, D.A. Cucchi-Colleoni, and J.C. Gasparoni. 2008. New contribution on spatial and seasonal variability of environmental conditions of the Golfo San Jorge benthic system, Argentina. Journal of the Marine Biological Association of the United Kingdom 88(2):227–236, https://doi.org/10.1017/S0025315408000465.
  12. Franks, P.J. 1992. Phytoplankton blooms at fronts: Patterns, scales, and physical forcing mechanisms. Reviews in Aquatic Sciences 6(2):121–137.
  13. Geider, R., and J. LaRoche. 2002. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37(1):1–17, https://doi.org/10.1017/S0967026201003456.
  14. Giménez, E.M., G. Winkler, M. Hoffmeyer, and G.A. Ferreyra. 2018. Composition, spatial distribution, and trophic structure of the zooplankton community in San Jorge Gulf, southwestern Atlantic Ocean. Oceanography 31(4):154–163, https://doi.org/​10.5670/oceanog.2018.418.
  15. Glembocki, N.G., G.N. Williams, M.E. Góngora, D.A. Gagliardini, and J.M.L. Orensanz. 2015. Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. Journal of Sea Research 95:22–35, https://doi.org/10.1016/​j.seares.2014.10.011.
  16. Glibert, P.M. 2016. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30, https://doi.org/10.1016/​j.hal.2016.01.008.
  17. Glorioso, P.D., and R.A. Flather. 1995. A barotropic model of the currents off SE South America. Journal of Geophysical Research 100(95):427–440, https://doi.org/10.1029/95JC00942.
  18. Hillebrand, H., C.D. Durselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35:403–424, https://doi.org/​10.1046/j.1529-8817.1999.3520403.x.
  19. Kirk, J.T.O. 1994. Light and Photosynthesis in Aquatic Systems, 2nd ed. Cambridge University Press. Cambridge, UK, 509 p.
  20. Landeira, J.M., B. Ferron, M. Lunven, P. Morin, L. Marie, and M. Sourisseau. 2014. Biophysical interactions control the size and abundance of large phytoplankton chains at the Ushant tidal front. PLoS ONE 9(2):1–14, https://doi.org/10.1371/journal.pone.0090507.
  21. Loder, J.W., and T. Platt. 1985. Physical controls on phytoplankton production at tidal fronts. Proceedings of the Nineteenth European Marine Biology Symposium: Plymouth. September 16–21, 1984, Devon, UK.
  22. Louge, E.B., R. Reta, B.A. Santos, and D.R. Hernández. 2004. Variaciones interanuales (1995–2000) de la temperatura y la salinidad registradas en los meses de enero en el Golfo San Jorge y aguas adyacentes (43°S–47°S). Instituto Nacional de Desarrollo Pesquero, Revista de Investigación y Desarrollo Pesquero, Contribución 16, 15 pp.
  23. Mann, K.H., and J.R.N. Lazier. 1996. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Science Publications, Cambridge, 394 pp.
  24. Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica 1(4):337–341, http://doi.org/10.1590/S0102-09352000000400008.
  25. Maxwell, K., and G.N Johnson. 2000. Chlorophyll fluorescence: A practical guide. Journal of Experimental Botany 51(345):659–668, https://doi.org/​10.1093/jexbot/51.345.659.
  26. McDougall, T.J., and P.M. Barker. 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG 127:1–28.
  27. Menden-Deuer, S., and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45(3):569–579, https://doi.org/​10.4319/lo.2000.45.3.0569.
  28. Moore, C.M., D.J. Suggett, A.E. Hickman, Y.N. Kim, J.F. Tweddle, J. Sharples, R.J. Geider, and P.M. Holligan. 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnology and Oceanography 51(2):936–949, https://doi.org/​10.4319/lo.2006.51.2.0936.
  29. Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, and others. 2006. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea. Helsinki Commission - Baltic Sea Environment Proceedings No. 106, 144 pp.
  30. Palma, E.D., R.P. Matano, and A.R. Piola. 2004. A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. Journal of Geophysical Research 109(8):1–17, https://doi.org/​10.1029/​2004JC002315.
  31. Pingree, R.D. 1979. Baroclinic eddies bordering the Celtic Sea in late summer. Journal of the Marine Biological Association of the United Kingdom 59(3):689–698, https://doi.org/10.1017/s0025315400045677.
  32. Pingree, R.D., P.M. Holligan, and G.T. Mardell. 1978. The effects of vertical stability on phytoplankton distributions in the summer on the northwest European shelf. Deep Sea Research 25(11):1,011–1,016, https://doi.org/​10.1016/0146-6291(78)90584-2.
  33. Pingree, R.D., P.M. Holligan, and G.T. Mardell. 1979. Phytoplankton growth and cyclonic eddies. Nature 278(5701):245­–247, https://doi.org/​10.1038/278245a0.
  34. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org.
  35. Redfield, A.C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. Pp. 176–192 in James Johnstone Memorial Volume. R.J. Daniel, ed., University of Liverpool.
  36. Rivas, A.L. 1997. Current-meter observations in the Argentine continental shelf. Continental Shelf Research 17(4):391–406.
  37. Rivas, A.L. 2006. Quantitative estimation of the influence of surface thermal fronts over chlorophyll concentration at the Patagonian shelf. Journal of Marine Systems 63(3–4):183–190, https://doi.org/​10.1016/j.jmarsys.2006.07.002.
  38. Sarthou, G., K.R. Timmermans, S. Blain, and P. Tréguer. 2005. Growth, physiology and fate of diatoms in the ocean: A review. Journal of Sea Research 53:25–42, https://doi.org/10.1016/​j.seares.2004.01.007.
  39. Skalar Analytical BV. 2005. The SANplus segmented flow analyser: Soil and plant analysis. Skalar Analytical BV, Netherlands, software.
  40. Simpson, J.H., and J.R. Hunter. 1974. Fronts in the Irish Sea. Nature 250(5465):404–406, https://doi.org/​10.1038/250404a0.
  41. Suggett, D.J., C.M. Moore, A.E. Hickman, and R.J. Geider. 2009. Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Marine Ecology Progress Series 376:1–19, https://doi.org/10.3354/meps07830.
  42. Strickland, J.D.H., and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, 310 pp.
  43. Tarran, G.A., J.L. Heywood, and M.V. Zubkov. 2006. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Sea Research Part II 53:1,516−1,529, https://doi.org/10.1016/j.dsr2.2006.05.004.
  44. Tonini, M., E. Palma, and A. Rivas. 2006. Modelo de alta resolución de los golfos patagónicos. Asociación Argentina de Mecánica Computacional 15:1,441–1,460, https://doi.org/​10.1017/CBO9781107415324.004.
  45. Townsend, D.W., and N.R. Pettigrew. 1997. Nitrogen limitation of secondary production on Georges Bank. Journal of Plankton Research 19(2):221–235, https://doi.org/10.1093/plankt/19.2.221.
  46. Townsend, D.W., and M. Thomas. 2002. Springtime nutrient and phytoplankton dynamics on Georges Bank. Marine Ecology Progress Series 228:57–74, https://doi.org/10.3354/meps228057.
  47. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für theoretische und angewandte Limnologie: Mitteilungen, 9(1):1–38.
  48. Zubkov, M.V., M.A. Sleigh, and P.H. Burkill. 2000. Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquatic Microbial Ecology 21(1):13–20, https://doi.org/​10.3354/ame021013.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.