Oceanography The Official Magazine of
The Oceanography Society
Volume 24 Issue 03

View Issue TOC
Volume 24, No. 3
Pages 42 - 50

OpenAccess

Paleomagnetism Near the North Magnetic Pole: A Unique Vantage Point for Understanding the Dynamics of the Geomagnetic Field and Its Secular Variations

By Guillaume St-Onge  and Joseph S. Stoner 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Along with the dramatic decrease in global geomagnetic field intensity, recent observations demonstrate that the geomagnetic field in the Arctic has dramatically changed over the last century. This change is best illustrated by the recent migration of the North Magnetic Pole (which has been in the Canadian Arctic for the last 400 years) into the Arctic Ocean. Because historical records are short, paleomagnetic studies are needed to put these recent Arctic geomagnetic changes into a proper temporal context. This paper presents an overview of Arctic geomagnetism, paleomagnetism, and recent efforts to move our understanding forward by looking at recent or emerging high-resolution Holocene records from the Low and the High Arctic. These paleomagnetic records attest to the unique nature of the geomagnetic field in the High Arctic. They also highlight how the Arctic, and especially the High Arctic, is a unique vantage point for studying geodynamo processes associated with the tangent cylinder model of convective flow within Earth’s core that could lead to differences in the behavior of the geomagnetic field observed at Earth’s surface, and possible relationships to paleomagnetic secular variations at mid-latitudes.

Citation

St-Onge, G., and J.S. Stoner. 2011. Paleomagnetism near the North Magnetic Pole: A unique vantage point for understanding the dynamics of the geomagnetic field and its secular variations. Oceanography 24(3):42–50, https://doi.org/10.5670/oceanog.2011.53.

References
    Andrews, J.T., and A.E. Jennings. 1990. Geomagnetic secular variations (inclination) of high latitude fiord cores: Eastern Canadian Arctic. Polar Research 8:245–259, https://doi.org/10.1111/j.1751-8369.1990.tb00387.x.
  1. Aurnou, J., S. Andreadis, L. Zhu, and P. Olson. 2003. Experiments on convection in Earth’s core tangent cylinder. Earth and Planetary Science Letters 212:119–134, https://doi.org/10.1016/S0012-821X(03)00237-1.
  2. Barletta, F., G. St-Onge, J.E.T. Channell, A. Rochon, L. Polyak, and D.A. Darby. 2008. High-resolution paleomagnetic secular variation and relative paleointensity proxy from the western Canadian Arctic: Implication for Holocene stratigraphy and geomagnetic field behaviour. Canadian Journal of Earth Sciences 45:1,265–1,281.
  3. Barletta, F., G. St-Onge, J.E.T. Channell, and A. Rochon. 2010. Dating of Holocene western Canadian Arctic sediments by matching paleomagnetic secular variation to a geomagnetic field model. Quaternary Science Reviews 29:2,315–2,324, https://doi.org/10.1016/j.quascirev.2010.05.035.
  4. Besonen, M.R., W. Patridge, R.S. Bradley, P. Francus, J.S. Stoner, and M. Abbott. 2008. A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. The Holocene 18:169–180, https://doi.org/10.1177/0959683607085607.
  5. Bloxham, J., and D. Gubbins. 1985. The secular variation of Earth’s magnetic field. Nature 317:777–781, https://doi.org/10.1038/317777a0.
  6. Bloxham, J., and D. Gubbins. 1987. Thermal core-mantle interactions. Nature 325:511–513, https://doi.org/10.1038/325511a0.
  7. Bloxham, J.B., D. Gubbins, and A. Jackson. 1989. Geomagnetic secular variation. Philosophical Transactions of the Royal Society of London A 329(1606):416–502, https://doi.org/10.1098/rsta.1989.0087.
  8. Channell, J.E.T., and C. Xuan. 2009. Self-reversal and apparent magnetic excursions in Arctic sediments. Earth and Planetary Science Letters 284:124–131, https://doi.org/10.1016/j.epsl.2009.04.020.
  9. Chulliat, A., G. Hulot, L.R. Newitt, and J.-J. Orgeval. 2010a. What caused recent acceleration of the North Magnetic Pole drift? Eos, Transactions, American Geophysical Union 91(51):501–512, https://doi.org/10.1029/2010EO510001.
  10. Chulliat, A., G. Hulot, and L.R. Newitt. 2010b. Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the north magnetic pole during the 1990s. Journal of Geophysical Research 115, B07101, https://doi.org/10.1029/2009JB007143.
  11. Clark, D.L. 1970. Magnetic reversals and sedimentation rates in the Arctic Basin. Geological Society of America Bulletin 81:3,129–3,134, https://doi.org/10.1130/0016-7606(1970)81[3129:MRASRI]2.0.CO;2.
  12. Cook, T.L., R.S. Bradley, J.S. Stoner, and P. Francus. 2008. Five thousand years of sediment transfer in a High Arctic watershed recorded in annually laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut, Canada. Journal of Paleolimnology, https://doi.org/10.1007/s10933-008-9252-0.
  13. Darby, D.A., J. Ortiz, L. Polyak, S. Lund, M. Jakobsson, and R.A. Woodgate. 2009. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments. Global and Planetary Change 68:58–72, https://doi.org/10.1016/j.gloplacha.2009.02.007.
  14. De Santis, A. 2007. How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse? Physics of the Earth and Planetary Interiors 162:217–226, https://doi.org/10.1016/j.pepi.2007.04.011.
  15. Gallet, Y., A. Genevey, and V. Courtillot. 2003. On the possible occurrence of ‘archaeomagnetic jerks’ in the geomagnetic field over the past three millennia. Earth and Planetary Science Letters 214:237–242, https://doi.org/10.1016/S0012-821X(03)00362-5.
  16. Gallet, Y., G. Hulot, A. Chulliat, and A. Genevey. 2009. Geomagnetic field hemispheric asymmetry and archeomagnetic jerks. Earth and Planetary Science Letters 284:179–186, https://doi.org/10.1016/j.epsl.2009.04.028.
  17. Glatzmaier, G., and P.H. Roberts. 1995. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377:203–209, https://doi.org/10.1038/377203a0.
  18. Gubbins, D., A.L. Jones, and C.C. Finlay. 2006. Fall in Earth’s magnetic field is erratic. Science 312:900–902, https://doi.org/10.1126/science.1124855.
  19. Hagstrum, J.T., and D.E. Champion. 2002. A Holocene paleosecular variation record from 14C-dated volcanic rocks in western North America. Journal of Geophysical Research 107, https://doi.org/10.1029/2001JB000524.
  20. Haines, G.V., and L.R. Newitt. 1997. The Canadian geomagnetic reference field 1995. Journal of Geomagnetism and Geoelectricity 49:317–336, https://doi.org/10.5636/jgg.49.317.
  21. Hulot, G., C. Eymin, B. Langlais, M. Mandea, and P. Olsen. 2002. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416:620–623, https://doi.org/10.1038/416620a.
  22. Jackson, A., A.R.T. Jonkers, and M.R. Walker. 2000. Four centuries of geomagnetic secular variation from historical records. Philosophical Transactions of the Royal Society Series A 358:957–990, https://doi.org/10.1098/rsta.2000.0569.
  23. Jakobsson, M., R. Løvlie, H. Al-Hanbali, E. Arnold, J. Backman, and M. Mörth. 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28:23–26, https://doi.org/10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2.
  24. Kono, M., and P.H. Roberts. 2003. Recent geodynamo simulation and observations of the geomagnetic field. Reviews of Geophysics 40, https://doi.org/10.1029/2000RG000102.
  25. Korte, M., and C. Constable. 2005. Continuous geomagnetic field models for the past 7 millennia. 2. CALS7K. Geochemistry, Geophysics, Geosystems 6, Q02H16, https://doi.org/10.1029/2004GC000801.
  26. Lawrence, K.P., L. Tauxe, H. Staudigel, and C.G. Constable. 2009. Paleomagnetic field properties at high southern latitude. Geochemistry, Geophysics, Geosystems 10, Q01005, https://doi.org/10.1029/2008GC002072.
  27. Ledu, D., A. Rochon, A. de Vernal, F. Barletta, and G. St-Onge. 2010a. Holocene sea-ice history and climate variability along the main axis of the Northwest Passage, Canadian Arctic. Paleoceanography 25, PA2213, https://doi.org/10.1029/2009PA001817.
  28. Ledu, D., A. Rochon, A. de Vernal, and G. St-Onge. 2010b. Holocene paleoceanography of the Northwest Passage, Canadian Arctic Archipelago: The possible onset of an Arctic Oscillation climate mode. Quaternary Science Reviews 29:3,468–3,488, https://doi.org/10.1016/j.quascirev.2010.06.018.
  29. Lisé-Pronovost, A., G. St-Onge, S. Brachfeld, F. Barletta, D. Darby. 2009. Paleomagnetic constraints on the Holocene stratigraphy of the Arctic Alaskan margin. Global and Planetary Changes 68:85–99, https://doi.org/10.1016/j.gloplacha.2009.03.015.
  30. Løvlie, R., B. Markussen, H.P. Sejrup, and J. Thiede. 1986. Magnetostratigraphy in three Arctic Ocean sediment cores: Arguments for geomagnetic excursions with oxygen-isotope stage 2-3. Physics of the Earth and Planetary Interiors 43:173–184.
  31. Lund, S.P., and S.K. Banerjee. 1985. Late Quaternary paleomagnetic field secular variation from two Minnesota Lakes. Journal of Geophysical Research 90:803–825, https://doi.org/10.1029/JB090iB01p00803.
  32. Newitt, L.R., M. Mandea, L.A. McKee, and J.J. Orgeval. 2002. Recent acceleration of the North magnetic pole linked to magnetic jerks. Eos, Transactions, American Geophysical Union 83:381 and 388–389, https://doi.org/10.1029/2002EO000276.
  33. Newitt, L.R., A. Chulliat, and J.-J. Orgeval. 2009. Location of the North Magnetic Pole in April 2007. Earth, Planets and Space 61(6):703–710.
  34. Nowaczyk, N.R., T.W. Frederichs, A. Eisenhauer, and G. Gard. 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: Evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophysical Journal International 117:453–471, https://doi.org/10.1111/j.1365-246X.1994.tb03944.x.
  35. Nowaczyk, N.R., and J. Knies. 2000. Magneto-stratigraphic results from eastern Arctic Ocean-AMS 14C ages and relative paleointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions. Geophysical Journal International 140:185–197, https://doi.org/10.1046/j.1365-246x.2000.00001.x.
  36. Nowaczyk, N.R., T.W. Frederichs, H. Kassen, N. Norgaard-Pedersen, R.F. Spielhagen, R. Stein, and D. Weiel. 2001. Sedimentation rates in the Makarov Basin, central Arctic Ocean: A paleomagnetic and rock magnetic approach. Paleoceanography 16:368–389, https://doi.org/10.1029/2000PA000521.
  37. Nowaczyk, N.R., P. Minyuk, M. Melles, J. Brigham-Grette, O. Glushkova, M. Nolan, A.V. Lozhkin, T.V. Stetsenko, P.M. Andersen, and S.L. Forman. 2002. Magnetostratigraphic results from impact crater Lake El’gygytgyn, northeastern Siberia: A 300 kyr long high-resolution terrestrial paleoclimatic record from the Arctic. Geophysical Journal International 150:109–126, https://doi.org/10.1046/j.1365-246X.2002.01625.x.
  38. Nowaczyk, N.R., M. Antonow, J. Knies, and R.F. Spielhagen. 2003. Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS 14C dating. Geophysical Journal International 155:1,065–1,080, https://doi.org/10.1111/j.1365-246X.2003.02115.x.
  39. Olson, P., and J. Aurnou. 1999. A polar vortex in the Earth’s core. Nature 402:170–173, https://doi.org/10.1038/46017.
  40. Olsen, N., and M. Mandea. 2007. Will the Magnetic North Pole move to Siberia. Eos, Transactions, American Geophysical Union 88:293–294, https://doi.org/10.1029/2007EO290001.
  41. O’Regan, M., J. King, J. Backman, M. Jakobsson, H. Palike, K. Moran, C. Heil, T. Sakamoto, T.M. Cronin, and R.W. Jordan. 2008. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography 23, PA1S19, https://doi.org/10.1029/2007PA001551.
  42. Ortiz, J.D., L. Polyak, J.M. Grebmeier, D.A. Darby, and D.D. Eberl. 2009. Provenance of Holocene sediment on the Chukchi–Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis. Global and Planetary Change 68:73–84, https://doi.org/10.1016/j.gloplacha.2009.03.020.
  43. Ross, J.C. 1834. On the position of the North Magnetic Pole. Philosophical Transactions of the Royal Society of London A 124:46–51, https://doi.org/10.1098/rstl.1834.0005.
  44. Ross, J. 1835. Narrative of a Second Voyage in Search of a North-West Passage, and of a Residence in the Arctic Regions, During the Years 1829, 1830, 1831, 1832, 1833: Including the Reports of Commander, Now Captain, James Clark Ross, R.N., F.R.S., F.L.S., etc., and the Discovery of the Northern Magnetic Pole. A.W. Webster, London.
  45. Schneider, D.A., M.F. Backman, W.B. Curry, and G. Possnert. 1996. Paleomagnetic constraints on sedimentation rates in the eastern Arctic Ocean. Quaternary Research 46:62–71, https://doi.org/10.1006/qres.1996.0044.
  46. Spielhagen, R.F., K.H. Baumann, H. Erlenkeuser, N.R. Nowaczyk, N. Nøorgaard-Pedersen, C. Vogt, and D. Weiel. 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews 23:1,455–1,483, https://doi.org/10.1016/j.quascirev.2003.12.015.
  47. Steuerwald, B.A., D.L. Clark, and J.A. Andrew. 1968. Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth Planetary Science Letters 5:79–85, https://doi.org/10.1016/S0012-821X(68)80018-4.
  48. Stoner, J.S., M.H. Davies, R.S. Bradley, T. Cook, P. Francus, M.R. Besonen, J.E.T. Channell, and G. St-Onge. 2009. Abrupt shift of the North Magnetic Pole over the last millennium and beyond. Eos, Transactions, American Geophysical Union 86(52), Fall Meeting Supplement, Abstract GP13B-0774.
  49. St-Onge, G., J.S. Stoner, and C. Hillaire-Marcel. 2003. Holocene paleomagnetic records from the St. Lawrence Estuary: Centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth and Planetary Science Letters 209:113–130, https://doi.org/10.1016/S0012-821X(03)00079-7.
  50. Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, G.S. Burr, K.A. Hughen, B. Kromer, G. McCormac, J. van der Plicht, and M. Spurk. 1998. INTCAL98 Radiocarbon Age Calibration, 24000–0 cal BP. Radiocarbon 40:1,041–1,083.
  51. Tauxe, L. 2010. Essentials of Paleomagnetism. University of California Press, Berkeley, California, 489 pp.
  52. Verosub, K.L., P.J. Mehringer Jr., and P. Waterstraat. 1986. Holocene secular variation in western North America: Paleomagnetic record from Fish Lake, Harney County, Oregon. Journal of Geophysical Research 91:3,609–3,623, https://doi.org/10.1029/JB091iB03p03609.
  53. Witte, W.K., and D.V. Kent. 1988. Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores. Quaternary Research 29:43–53, https://doi.org/10.1016/0033-5894(88)90070-1.
  54. Xuan, C., and J.E.T. Channell. 2010. Origin of apparent magnetic excursions in deep-sea sediments from Mendeleev-Alpha Ridge, Arctic Ocean. Geochemistry, Geophysics, Geosystems 11, Q02003, https://doi.org/10.1029/2009GC002879.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.