Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 240 - 251

OpenAccess

Overturning Assumptions: Past, Present, and Future Concerns about the Ocean’s Circulation

By M. Susan Lozier  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

In 1800, Count Rumford ascertained the ocean’s meridional overturning circulation from a single profile of ocean temperature constructed with the use of a rope, a wooden bucket, and a rudimentary thermometer. Over two centuries later, arrays of gliders, floats, and moorings are deployed across the span of the North Atlantic to measure the overturning circulation and its spatial and temporal variability. While Rumford appreciated the role the ocean’s overturning plays in redistributing heat, today we understand its crucial role in sequestering anthropogenic carbon dioxide in the deep ocean. What we don’t understand, however, are the mechanisms that control overturning strength and how and why the overturning will change in the decades ahead. This information is crucial to our understanding of the climate system because the extent to which the ocean will continue to be a heat and carbon reservoir depends on the strength of the overturning. Although we have reasons to reject the popularized ocean conveyor belt as a paradigm for the overturning, oceanographers are just now piecing together the complex flow patterns that carry warm waters poleward and cold water equatorward. As the pieces come together, some long-held assumptions are being overturned, and some new paradigms are surfacing.

Citation

Lozier, M.S. 2015. Overturning assumptions: Past, present, and future concerns about the ocean’s circulation. Oceanography 28(2):240–251, https://doi.org/10.5670/oceanog.2015.50.

References
    Alley, R.B., J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke Jr., R.T. Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, and J.M. Wallace. 2003. Abrupt climate change. Science 299:2,005–2,010, https://doi.org/10.1126/science.1081056.
  1. Alley, R.B., P.A. Mayewski, T. Sowers, M. Stuiver, K.C. Taylor, and P.U. Clark. 1997. Holocene climatic instability: A prominent, widespread event 8200 years ago. Geology 25:483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2.
  2. Bingham, R.J., C.W. Hughes, V. Roussenov, and R.G. Williams. 2007. Meridional coherence of the North Atlantic meridional overturning circulation. Geophysical Research Letters 34, L23606, https://doi.org/10.1029/2007GL031731.
  3. Bower, A.S., M.S. Lozier, S.F. Gary, and C.W. Böning. 2009. Interior pathways of the North Atlantic meridional overturning. Nature 459:243–247, https://doi.org/10.1038/nature07979.
  4. Brambilla, E., and L.D. Talley. 2006. Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. Journal of Geophysical Research 111, C07026, https://doi.org/10.1029/2005jc003146.
  5. Broecker, W.S. 1987. The biggest chill. Natural History 97(10):74.
  6. Broecker, W.S. 1991. The great ocean conveyor. Oceanography 4(2):79–89, https://doi.org/10.5670/oceanog.1991.07.
  7. Broecker, W.S., and T-H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Palisades, NY, 690 pp.
  8. Bryden, H.L., H.R. Longworth, and S.A. Cunningham. 2005. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature 438:655–657, https://doi.org/10.1038/nature04385.
  9. Burkholder, K.C., and M.S. Lozier. 2014. Tracing pathways of the North Atlantic meridional overturning circulation’s upper limb. Geophysical Research Letters 41:4,254–4,260, https://doi.org/10.1002/2014GL060226.
  10. Cunningham, S.A., T. Kanzow, D. Rayner, M.O. Baringer, W.E. Johns, J. Marotzke, H.R. Longworth, E.M. Grant, J.J.-M. Hirschi, L.M. Beal, and others. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938, https://doi.org/10.1126/science.1141304.
  11. Delworth, T.L., R. Zhang, and M.E. Mann. 2007. Decadal to centennial variability of the Atlantic from observations and models. Pp. 131–148 in Ocean Circulation: Mechanisms and Impacts. A. Schmittner, J.C.H. Chiang, and S.R. Hemming, eds, American Geophysical Union, Washington, DC.
  12. Dickson, B., S. Dye, S. Jónsson, A. Köhl, A. Macrander, M. Marnela, J. Meincke, S. Olsen, B. Rudels, H. Valdimarsson, and G. Voet. 2008. The overflow flux west of Iceland: Variability, origins and forcing. Pp. 443–474 in Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. R.R. Dickson, J. Meincke, and P. Rhines, eds, Springer, Netherlands, https://doi.org/10.1007/978-1-4020-6774-7_20.
  13. Ellis, H. 1751. A letter to the Rev. Dr. Hales, F.R.S. from Captain Henry Ellis, F.R.S. dated Jan. 7, 1750–51, at Cape Monte Africa, Ship Earl of Halifax. Philosophical Transactions of the Royal Society of London 47:211–214.
  14. Fischer, J., M. Visbeck, R. Zantopp, and N. Nunes. 2010. Interannual to decadal variability of outflow from the Labrador Sea. Geophysical Research Letters 37, L24610, https://doi.org/10.1029/2010GL045321.
  15. Fratantoni, D.M. 2001. North Atlantic surface circulation during the 1990s observed with satellite-tracked drifters. Journal of Geophysical Research 106(C10):22,067–22,093, https://doi.org/10.1029/2000JC000730.
  16. Holland, D.M., R.H. Thomas, B. de Young, M.H. Ribergaard, and B. Lyberth. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosciences 1:659–664, https://doi.org/10.1038/ngeo316.
  17. IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1,535 pp., http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf.
  18. Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson. 2012. Variability of the Denmark Strait overflow: Moored time series from 1996–2011. Journal of Geophysical Research 117, C12003, https://doi.org/10.1029/2012JC008244.
  19. Knight, J.R., R.J. Allan, C.K. Folland, M. Vellinga, and M.E. Mann. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters 32, L20708, https://doi.org/10.1029/2005GL024233.
  20. Knight, J.R., C.K. Folland, and A.A. Scaife. 2006. Climatic impacts of the Atlantic multidecadal oscillation. Geophysical Research Letters 33, L17706, https://doi.org/10.1029/2006GL026242.
  21. Lozier, M.S. 2010. Deconstructing the conveyor belt. Science 328:1,507–1,511, https://doi.org/10.1126/science.1189250.
  22. Lozier, M.S. 2012. Overturning in the North Atlantic. Annual Review of Marine Science 4:291–315, https://doi.org/10.1146/annurev-marine-120710-100740.
  23. Merz, A. 1925. Die Deutsche Atlantische Expedition auf dem Vermessungs- und Forschungsschiff “Meteor.” Bericht. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalische-Mathematische Klasse:562–586.
  24. Mielke, C., E. Frajka-Williams, and J. Baehr. 2013. Observed and simulated variability of the AMOC at 26°N and 41°N. Geophysical Research Letters 40:1,159-1,164, https://doi.org/10.1002/grl.50233.
  25. NRC (National Research Council). 2002. Abrupt Climate Change: Inevitable Surprises. National Academies Press, Washington, DC, 244 pp.
  26. NRC. 2013. Abrupt Impacts of Climate Change: Anticipating Surprises. National Academies Press, Washington, DC, 250 pp.
  27. Östlund, H.G., and C.G.H. Rooth. 1990. The North Atlantic tritium and radiocarbon transients 1972–1983. Journal of Geophysical Research 95(C11):20,147–20,165, https://doi.org/10.1029/JC095iC11p20147.
  28. Pickart, R.S., and M.A. Spall. 2007. Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. Journal of Physical Oceanography 37:2,207–2,227, https://doi.org/10.1175/JPO3178.1.
  29. Rignot, E., and P. Kanagaratnam. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990, https://doi.org/10.1126/science.1121381.
  30. Rumford, B., Count of. 1800. Essay VII, The propagation of heat in fluids. Pp. 197–386 in Essays, Political, Economical, and Philosophical, A New Edition 2. London.
  31. Sarmiento, J.L., and N. Gruber. 2002. Sinks for anthropogenic carbon. Physics Today 55(8):30–36, https://doi.org/10.1063/1.1510279.
  32. Serreze, M.C., M.M. Holland, and J. Stroeve. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1,533–1,536, https://doi.org/10.1126/science.1139426.
  33. Smith, D.M., R. Eade, N.J. Dunstone, D. Fereday, J.M. Murphy, H. Pohlmann, and A.A. Scaife. 2010. Skillful multi-year predictions of Atlantic hurricane frequency. Nature Geoscience 3:846–849, https://doi.org/10.1038/ngeo1004.
  34. Stommel, H. 1958. The abyssal circulation. Deep Sea Research 5:80–82.
  35. Straneo, F., G. Hamilton, D.A. Sutherland, L.A. Stearns, F. Davidson, M.O. Hammill, G.B. Stenson, and A. Rosing-Asvid. 2010. Rapid circulation of warm subtropical waters in a major glacial fjord off East Greenland. Nature Geoscience 3:182–186, https://doi.org/10.1038/ngeo764.
  36. Sutton, R.T., and D.L.R. Hodson. 2005. Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118, https://doi.org/10.1126/science.1109496.
  37. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, and others. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II 56:554–577, https://doi.org/10.1016/j.dsr2.2008.12.009.
  38. Tchernia, P. 1980. Descriptive Regional Oceanography. Pergamon Press, 253 pp.
  39. US CLIVAR AMOC Planning Team. 2007. Implementation Strategy for a JSOST Near-Term Priority, Assessing Meridional Overturning Circulation Variability: Implications for Rapid Climate Change. US CLIVAR Report 2007-2, US CLIVAR Office, Washington, DC, 23 pp., http://www.usclivar.org/sites/default/files/amoc/AMOC_Strategy_2007.pdf.
  40. Visbeck, M. 2007. Oceanography: Power of pull. Nature 447:383, https://doi.org/10.1038/447383a.
  41. Warren, B.A. 1981. Deep circulation of the world ocean. Pp. 6–41 in Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel. B.A. Warren and C. Wunsch, eds, The MIT Press, Cambridge, MA.
  42. Wunsch, C. 2002. What is the thermohaline circulation? Science 298:1,179–1,181, https://doi.org/10.1126/science.1079329.
  43. Zhang, R., and T.L. Delworth. 2006. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters 33, L17712, https://doi.org/10.1029/2006GL026267.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.