Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 03

View Issue TOC
Volume 29, No. 3
Pages 96 - 107


Over What Area Did the Oil and Gas Spread During the 2010 Deepwater Horizon Oil Spill?

By Tamay M. Özgökmen , Eric P. Chassignet, Clint N. Dawson , Dmitry Dukhovskoy, Gregg Jacobs, James Ledwell , Oscar Garcia-Pineda, Ian R. MacDonald, Steven L. Morey, Maria Josefina Olascoaga, Andrew C. Poje, Mark Reed, and Jørgen Skancke 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico resulted in the collection of a vast amount of situ and remotely sensed data that can be used to determine the spatiotemporal extent of the oil spill and test advances in oil spill models, verifying their utility for future operational use. This article summarizes observations of hydrocarbon dispersion collected at the surface and at depth and our current understanding of the factors that affect the dispersion, as well as our improved ability to model and predict oil and gas transport. As a direct result of studying the area where oil and gas spread during the DWH oil spill, our forecasting capabilities have been greatly enhanced. State-of-the-art oil spill models now include the ability to simulate the rise of a buoyant plume of oil from sources at the seabed to the surface. A number of efforts have focused on improving our understanding of the influences of the near-surface oceanic layer and the atmospheric boundary layer on oil spill dispersion, including the effects of waves. In the future, oil spill modeling routines will likely be included in Earth system modeling environments, which will link physical models (hydrodynamic, surface wave, and atmospheric) with marine sediment and biogeochemical components.


Özgökmen, T.M., E.P. Chassignet, C.N. Dawson, D. Dukhovskoy, G. Jacobs, J. Ledwell, O. Garcia-Pineda, I.R. MacDonald, S.L. Morey, M.J. Olascoaga, A.C. Poje, M. Reed, and J. Skancke. 2016. Over what area did the oil and gas spread during the 2010 Deepwater Horizon oil spill? Oceanography 29(3):96–107, https://doi.org/10.5670/oceanog.2016.74.


Adcroft, A., R. Hallberg, J.P. Dunne, B.L. Samuels, J.A. Galt, C.H. Barker, and D. Payton. 2010. Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters 37, L18605, https://doi.org/​10.1029/2010GL044689.

Asaeda, T., and J. Imberger. 1993. Structure of bubble plumes in linearly stratified environments. Journal of Fluid Mechanics 249:35–57.

Berta, M., A. Griffa, M.G. Magaldi, T.M. Özgökmen, A.C. Poje, A.C. Haza, and M.J. Olascoaga. 2015. Improved surface velocity and trajectory estimates in the Gulf of Mexico from blended satellite altimetry and drifter data. Journal of Atmospheric and Oceanic Technology 32(10):1,880–1,901, https://doi.org/10.1175/JTECH-D-14-00226.1.

Brandvik, P.J., Ø.J. Johansen, F. Leirvik, U. Farooq, and P.S. Daling. 2013. Droplet breakup in subsurface oil releases: Part 1. Experimental study of droplet breakup and effectiveness of dispersant injection. Marine Pollution Bulletin 73(1):319–326, https://doi.org/10.1016/j.marpolbul.2013.05.020.

Camilli, R., C.M. Reddy, D.R. Yoerger, B.A.S. Van Mooy, M.V. Jakuba, J.C. Kinsey, C.P. McIntyre, S.P. Sylva, and J.V. Maloney. 2010. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204, https://doi.org/10.1126/science.1195223.

Capet, X., J.C. McWilliams, M.J. Molemaker, and A. Shchepetkin. 2008a. Mesoscale to submesoscale transition in the California Current system: Part I. Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography 38:29–43, https://doi.org/10.1175/2007JPO3671.1

Capet, X., J.C. McWilliams, M.J. Molemaker, and A.F. Shchepetkin. 2008b. Mesoscale to submesoscale transition in the California Current system: Part II. Frontal processes. Journal of Physical Oceanography 38(1):44–64, https://doi.org/10.1175/2007JPO3672.1.

Carrier, M.J., H. Ngodock, S. Smith, G. Jacobs, P. Muscarella, T. Özgökmen, B. Haus, and B. Lipphardt. 2014. Impact of assimilating ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR. Monthly Weather Review 142(4):1,509–1,524, https://doi.org/10.1175/MWR-D-13-00236.1.

Coelho, E.F., P. Hogan, G. Jacobs, P. Thoppil, H.S. Huntley, B.K. Haus, B.L. Lipphardt, A.D. Kirwan, E.H. Ryan, J. Olascoaga, and others. 2015. Ocean current estimation using a multi-model ensemble Kalman filter during the Grand Lagrangian Deployment experiment (GLAD). Ocean Modelling 87:86–106, https://doi.org/10.1016/​j.ocemod.2014.11.001.

Curcic, M., S.S. Chen, and T.M. Özgökmen. 2016. Hurricane-induced ocean surface transport and dispersion in the Gulf of Mexico. Geophysical Research Letters 43:2,773–2,781, https://doi.org/10.1002/2015GL067619.

D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas. 2011. Enhanced turbulence and dissipation at ocean fronts. Science 332:318–322, https://doi.org/10.1126/science.1201515.

Dukhovskoy, D., O. Garcia, I. MacDonald, S. Morey, and J. Ubnoske. 2015. The topological approach for objective evaluation of surface oil drift simulation. Paper presented at the 2015 Gulf of Mexico Oil Spill and Ecosystem Science Conference, Houston, TX, February 2015.

Etnoyer, P., L.N. Wickes, M. Silva, J.D. Dubick, L. Balthis, E. Salgado, and I.R. MacDonald. 2016. Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: Before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90, https://doi.org/10.1007/s00338-015-1363-2.

Fabregat, A., W.K. Dewar, T.M. Özgökmen, A.C. Poje, and N. Wienders. 2015. Numerical simulations of turbulent thermal, bubble and hybrid plumes. Ocean Modelling 90:16–28, https://doi.org/​10.1016/j.ocemod.2015.03.007.

Fabregat Tomàs, A., A.C. Poje, T.M. Özgökmen, and W.K. Dewar. In press. Effects of rotation on turbulent buoyant plumes in stratified environments. Journal of Geophysical Research, https://doi.org/10.1002/2016JC011737.

Fox-Kemper, B., and R. Ferrari. 2008. Parameterization of mixed-layer eddies: Part I. Theory and diagnosis. Journal of Physical Oceanography 38:1,145–1,165, https://doi.org/​10.1175/2007JPO3792.1.

Fraga, B., T. Stoesser, C.C.K. Lai, and S.A. Socolofsky. 2016. An LES-based Eulerian-Lagrangrian approach to predict the dynamics of bubble plumes. Ocean Modelling 97:27–36, https://doi.org/10.1016/​j.ocemod.2015.11.005.

Garcia-Pineda, O., I.R. MacDonald, X. Li, C.R. Jackson, and W.G. Pichel. 2013. Oil spill mapping and measurement in the Gulf of Mexico with Textural Classifier Neural Network Algorithm (TCNNA). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6(6):2,517–2,525, https://doi.org/10.1109/JSTARS.2013.2244061.

Garcia-Pineda, O., B. Zimmer, M. Howard, W. Pichel, X. Li, and I.R. MacDonald. 2009. Using SAR images to delineate ocean oil slicks with a Texture-Classifying Neural Network Algorithm (TCNNA). Canadian Journal of Remote Sensing 35(5):411–421, https://doi.org/10.5589/m09-035.

Goni, G.J., J.A. Trinanes, A. MacFadyen, D. Streett, M.J. Olascoaga, M.L. Imhoff, F. Muller-Karger, and M.A. Roffer. 2015. Variability of the deepwater horizon surface oil spill extent and its relationship to varying ocean currents and extreme weather conditions. Pp. 1–22 in Mathematical Modelling and Numerical Simulation of Oil Pollution Problems. M. Ehrhardt, ed., Springer International Publishing Switzerland, https://doi.org/10.1007/978-3-319-16459-5_1.

Gonçalves, R.C., M. Iskandarani, A. Srinivasan, W.C. Thacker, E.P. Chassignet, and O.M. Knio. 2016. A framework to quantify uncertainty in simulations of oil transport in the ocean. Journal of Geophysical Research 121:2,058–2,077, https://doi.org/10.1002/2015JC011311.

Halliwell, G.R., V. Kourafalou, M. Le Hénaff, L.K. Shay, and R. Atlas. 2015. OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico. Progress in Oceanography 130:32–46, https://doi.org/​10.1016/j.pocean.2014.09.004.

Haza, A.C., T.M. Özgökmen, A. Griffa, Z.D. Garraffo, and L. Piterbarg. 2012. Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Modelling 42:31–49, https://doi.org/10.1016/j.ocemod.2011.11.005.

Holt, B. 2004. SAR Imaging of the ocean surface. Pp. 25–80 in Synthetic Aperture Radar Marine User’s Manual. C. Jackson and J. Apel, eds, US Department of Commerce, NOAA/NESDIS, http://www.sarusersmanual.com/ManualPDF/NOAASARManual_CH02_pg025-080.pdf.

Hu, C., F. Muller-Karger, C. Taylor, D. Myhre, B. Murch, A.L. Odriozola, and G. Godoy. 2003. MODIS detects oil spills in Lake Maracaibo, Venezuela. Eos Transactions, American Geophysical Union 84(33):313–319, https://doi.org/10.1029/2003EO330002.

Huguenard, K.D., D.J. Bogucki, D.G. Ortiz-Suslow, N.J.M. Laxague, J.H. MacMahan, T.M. Özgökmen, B.K. Haus, A.J.H.M. Reniers, J. Hargrove, A.V. Soloviev, and H. Graber. 2016. On the nature of the frontal zone of the Choctawhatchee Bay plume in the Gulf of Mexico. Journal of Geophysical Research 121:1,322–1,345, https://doi.org/10.1002/2015JC010988.

Incardona, J.P., L.D. Gardner, T.L. Linbo, T.L. Brown, A.J. Esbaugh, E.M. Mager, J.D. Stieglitz, B.L. French, J.S. Labenia, C.A. Laetz, and others 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences of the United States of America 111:E1510–E1518, https://doi.org/10.1073/pnas.1320950111.

Jacobs, G.A., B.P. Bartels, D.J. Bogucki, F.J. Beron-Vera, S.S. Chen, E.F. Coelho, M. Curcic, A. Griffa, M. Gough, and B.K. Haus. 2014. Data assimilation considerations for improved ocean predictability during the Gulf of Mexico Grand Lagrangian Deployment (GLAD). Ocean Modelling 83:98–117, https://doi.org/10.1016/j.ocemod.2014.09.003.

Johansen, Ø., P.J. Brandvik, and U. Farooq. 2013. Droplet breakup in subsea oil releases: Part 2. Predictions of droplet size distributions with and without injection of chemical dispersants. Marine Pollution Bulletin 73(1):327–335, https://doi.org/​10.1016/j.marpolbul.2013.04.012.

Klemas, V. 2010. Tracking oil slicks and predicting their trajectories using remote sensors and models: Case studies of the Sea Princess and Deepwater Horizon oil spills. Journal of Coastal Research 26(5):789–797, https://doi.org/10.2112/10A-00012.1.

Kourafalou, V.H., and Y.S. Androulidakis. 2013. Influence of Mississippi River induced circulation on the Deepwater Horizon oil spill transport. Journal of Geophysical Research 118(8):3,823–3,842, https://doi.org/10.1002/jgrc.20272.

Ledwell, J.R., R. He, Z. Xue, S.F. DiMarco, L. Spencer, and P. Chapman. 2016. Dispersion of a tracer in the deep Gulf of Mexico. Journal of Geophysical Research 121:1,110–1,132, https://doi.org/10.1002/2015JC011405

Le Hénaff, M., V.H. Kourafalou, C.B. Paris, J. Helgers, Z.M. Aman, P.J. Hogan, and A. Srinivasan. 2012. Surface evolution of the Deepwater Horizon oil spill patch: Combined effects of circulation and wind-induced drift. Environmental Science & Technology 46(13):7,267–7,273, https://doi.org/10.1021/es301570w.

Lehr, W., S. Bristol, and A. Possolo. 2010. Oil Budget Calculator Deepwater Horizon Technical Documentation. The Federal Interagency Solutions Group, http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf.

Leifer, I., W.J. Lehr, D. Simecek-Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C.E. Jones, B. Holt, and others. 2012. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sensing of Environment 124:185–209, https://doi.org/​10.1016/j.rse.2012.03.024.

Liu, Y., R.H. Weisberg, S. Vignudelli, and G.T. Mitchum. 2014. Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico. Journal of Geophysical Research 119(5):2,827–2,842, https://doi.org/10.1002/2013JC009710.

Macdonald, I. 2015. Neural network analysis determination of oil slick distribution and thickness from satellite Synthetic Aperture Radar, April 24–August 3, 2010. Gulf of Mexico Research Initiative, https://doi.org/10.7266/N7KW5CZN.

MacDonald, I.R., O. Garcia-Pineda, A. Beet, S. Daneshgar Asl, S., L. Feng, G. Graettinger, D. French-McCay, J. Holmes, C. Hu, I. Leifer, and others. 2015. Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research 120:8,364–8,380, https://doi.org/​10.1002/2015JC011062

MacFadyen, A., G.Y. Watabayashi, C.H. Barker, and C.J. Beegle-Krause. 2011. Tactical modeling of surface oil transport during the Deepwater Horizon spill response. Pp.167–178 in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Y. Liu, A. MacFadyen, Z.-G. Ji, and R.H. Weisberg, eds, American Geophysical Union, Washington, DC, https://doi.org/10.1029/2011GM001128.

Mariano, A., V. Kourafalou, A. Srinivasan, H. Kang, G. Halliwell, E. Ryan, and M. Roffer. 2011. On the modeling of the 2010 Gulf of Mexico oil spill. Dynamics of Atmospheres and Oceans 52(1):322–340, https://doi.org/10.1016/​j.dynatmoce.2011.06.001.

McNutt, M.K., S. Chu, J. Lubchenco, T. Hunter, G. Dreyfus, S.A. Murawski, and D.M Kennedy. 2012. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109:20,222–20,228, https://doi.org/10.1073/pnas.1214389109.

Mensa, J., A. Griffa, Z. Garraffo, T.M. Özgökmen, A.C. Haza, and M. Veneziani. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dynamics 63:923–941, https://doi.org/10.1007/s10236-013-0633-1

Morey, S.L., D.S. Dukhovskoy, E.P. Chassignet, O. Garcia, and I. MacDonald. 2011. Objective evaluation of oil spill models using SAR imagery. Paper presented at the ASLO 2011 Aquatic Sciences Meeting, San Juan, Puerto Rico.

Muscarella, P., M.J. Carrier, H. Ngodock, S. Smith, B. Lipphardt Jr., A. Kirwan Jr., and H.S. Huntley. 2015. Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Monthly Weather Review 143(5):1,822–1,832, https://doi.org/10.1175/MWR-D-14-00164.1.

Nixon, Z., S. Zengel, M. Baker, M. Steinhoff, G. Fricano, S. Rouhani, and J. Michel. 2016. Shoreline oiling from the Deepwater Horizon oil spill. Marine Pollution Bulletin 107:170–178, https://doi.org/​10.1016/j.marpolbul.2016.04.003.

Olascoaga M.J., and G. Haller. 2012. Forecasting sudden changes in environmental pollution patterns. Proceedings of the National Academy of Sciences of the United States of America 109(13):4,738–4,743, https://doi.org/​10.1073/pnas.1118574109.

Olascoaga, M.J., F.J. Beron-Vera, G. Haller, J. Trinanes, M. Iskandarani, E.F. Coelho, B. Haus, H.S. Huntley, G. Jacobs Jr., A.D. Kirwan, Jr., and others. 2013. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophysical Research Letters 40(23):6,171–6,175, https://doi.org/10.1002/2013GL058624.

Özgökmen, T.M., and P.F. Fischer. 2012a. CFD application to oceanic mixed layer sampling with Lagrangian platforms. International Journal of Computational Fluid Dynamics 26:337–348, https://doi.org/10.1080/10618562.2012.668888.

Özgökmen, T.M., A.C. Poje, P.F. Fischer, H. Childs, H. Krishnan, C. Garth, A. Haza, and E. Ryan. 2012b. On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Modelling 56:16–30, https://doi.org/10.1016/j.ocemod.2012.07.004.

Passow, U. 2014. Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Research Part II 129:232–240, https://doi.org/10.1016/​j.dsr2.2014.10.001.

Poje, A.C., A.C. Haza, T.M. Özgökmen, M. Magaldi, and Z.D. Garraffo. 2010. Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modelling 31:36–50, https://doi.org/10.1016/j.ocemod.2009.09.002.

Poje, A.C., T.M. Özgökmen, B.L. Lipphart Jr., B. Haus, E.H. Ryan, A.C. Haza, G. Jacobs, A.J.H.M. Reniers, J. Olascoaga, G. Novelli, and others. 2014. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proceedings of the National Academy of Sciences of the United States of America 111(35):12,693–12,698, https://doi.org/​10.1073/pnas.1402452111.

Price, J.M., M. Reed, M.K. Howard, W.R. Johnson, Z.-G. Ji, C.F. Marshall, N.L. Guinasso, and G.B. Rainey. 2006. Preliminary assessment of an oil-spill trajectory model using satellite-tracked, oil-spill-simulating drifters. Environmental Modelling & Software 21(2):258–270, https://doi.org/10.1016/j.envsoft.2004.04.025.

Reddy, C.M., J.S. Arey, J.S. Seewald, S.P. Sylva, K.L. Lemkau, R.K. Nelson, C.A. Carmichael, C.P. McIntyre, J. Fenwick, G.T. Ventura, and others. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109(50):20,229–20,234, https://doi.org/10.1073/pnas.1101242108.

Reed, M., C. Turner, M. Spaulding, K. Jayko, and D. Dorson. 1988. Evaluation of Satellite-Tracked Surface Drifting Buoys for Simulating the Movement of Spilled Oil in the Marine Environment. Volume 2. Final Report. Applied Science Associates, Inc., Narragansett, RI.

Samuels, W.B., N.E. Huang, and D.E. Amsiuiz. 1982. An oil spill trajectory analysis model with a variable wind deflection angle. Ocean Engineering 9(4):347–360, https://doi.org/​10.1016/0029-8018(82)90028-2.

Shcherbina, A.Y., E.A. D’Asaro, C.M. Lee, J.M. Klymak, M.J. Molemaker, and J.C. McWilliams. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters 40:4,706–4,711, https://doi.org/10.1002/grl.50919.

Silva, M., P.J. Etnoyer, and I.R. MacDonald. 2016. Coral injuries observed at mesophotic reefs after the Deepwater Horizon oil discharge. Deep Sea Research Part II 129:96–107, https://doi.org/10.1016/j.dsr2.2015.05.013

Smith, R.A., J.R. Slack, T. Wyant, and K.J. Lanfear. 1982. The Oil Spill Risk Analysis Model of the US Geological Survey. US Geological Survey Open-File Report 80-687, 119 pp.

Socolofsky, S.A., and E.E. Adams. 2005. Role of slip velocity in the behavior of stratified multiphase plumes. Journal of Hydraulic Engineering 131(4):273–282, https://doi.org/​10.1061/(ASCE)0733-9429(2005)131:4(273).

Socolofsky, S.A., E.E. Adams, M.C. Boufadel, Z.M. Aman, O. Johansen, W.J. Konkel, D. Lindo, M.N. Madsen, E.W. North, C.B. Paris, and others. 2015. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. Marine Pollution Bulletin 96(1–2):110–126, https://doi.org/10.1016/j.marpolbul.2015.05.039.

Socolofsky, S.A., E.E. Adams, and C.R. Sherwood. 2011. Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophysical Research Letters 38, L09602, https://doi.org/10.1029/2011GL047174.

Speer, K., and J. Marshall. 1995. The growth of convective plumes at seafloor hot springs. Journal of Marine Research 53:1,025–1,057, https://doi.org/10.1357/0022240953212972.

Spier, C., W.T. Stringfellow, T.C. Hazen, and M. Conrad. 2013. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution 173:224–230, https://doi.org/10.1016/j.envpol.2012.10.019.

Walker, N.D., C.T. Pilley, V.V. Raghunathan, E.J. D’Sa, R.R. Leben, N.G. Hoffmann, P.J. Brickley, P.D. Coholan, N. Sharma, and H.C. Graber. 2011. Impacts of Loop Current frontal cyclonic eddies and wind forcing on the 2010 Gulf of Mexico oil spill. Pp. 103–116 in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Y. Liu, A. MacFadyen, Z.-G. Ji, and R.H. Weisberg, eds, American Geophysical Union, Washington, DC, https://doi.org/10.1029/2011GM001120.

Wei, M.Z., C. Rowley, P. Martin, C.N. Barron, and G. Jacobs. 2014. The US Navy’s RELO ensemble prediction system and its performance in the Gulf of Mexico. Quarterly Journal of the Royal Meteorological Society 140(681):1,129–1,149, https://doi.org/10.1002/qj.2199.

Weisberg, R.H., L. Zheng, and Y. Liu. 2011. Tracking subsurface oil in the aftermath of the Deepwater Horizon well blowout. Pp. 205–215 in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Y. Liu, A. MacFadyen, Z.-G. Ji, and R.H. Weisberg, eds, American Geophysical Union, Washington, DC, https://doi.org/10.1029/2011GM001131.

Yapa, P.D., M.R. Wimalaratne, A.L. Dissanayake, and J.A. DeGraff Jr. 2012. How does oil and gas behave when released in deepwater? Journal of Hydro-Environment Research 6(4):275–285, https://doi.org/10.1016/j.jher.2012.05.002.

Yaremchuk, M., P. Spence, M. Wei, and G. Jacobs. 2013. Lagrangian predictability in the DWH region from HF radar observations and model output. Deep Sea Research Part II 129:394–400, https://doi.org/10.1016/j.dsr2.2013.05.035.

Zheng, Y., M.A. Bourassa, and P. Hughes. 2013. Influences of sea surface temperature gradients and surface roughness changes on the motion of surface oil: A simple idealized study. Journal of Applied Meteorology and Climatology, https://doi.org/10.1175/JAMC-D-12-0211.1.

Zhong, Y., A. Bracco, and T. Villareal. 2012. Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnology and Oceanography, Fluids and Environments 2:12–27, https://doi.org/10.1215/21573689-1573372.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.