Oceanography The Official Magazine of
The Oceanography Society
Volume 30 Issue 02

View Issue TOC
Volume 30, No. 2
Pages 69 - 73

OpenAccess

On the Benefit of Current and Future ALPS Data for Improving Arctic Coupled Ocean-Sea Ice State Estimation

By An T. Nguyen , Victor Ocaña, Vikram Garg, Patrick Heimbach, John M. Toole, Richard A. Krishfield , Craig M. Lee, and Luc Rainville  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Autonomous and Lagrangian platforms and sensors (ALPS) have revolutionized the way the subsurface ocean is observed. The synergy between ALPS-based observations and coupled ocean-sea ice state and parameter estimation as practiced in the Arctic Subpolar gyre sTate Estimate (ASTE) project is illustrated through several examples. In the western Arctic, Ice-Tethered Profilers have been providing important hydrographic constraints of the water column down to 800 m depth since 2004. ASTE takes advantage of these detailed constraints to infer vertical profiles of diapycnal mixing rates in the central Canada Basin. The state estimation framework is also used to explore the potential utility of Argo-type floats in regions with sparse data coverage, such as the eastern Arctic and the seasonal ice zones. Finally, the framework is applied to identify potential deployment sites that optimize the impact of float measurements on bulk oceanographic quantities of interest.

Citation

Nguyen, A.T., V. Ocaña, V. Garg, P. Heimbach, J.M. Toole, R.A. Krishfield, C.M. Lee, and L. Rainville. 2017. On the benefit of current and future ALPS data for improving Arctic coupled ocean-sea ice state estimation. Oceanography 30(2):69–73, https://doi.org/10.5670/oceanog.2017.223.

References
    Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach. 2004. Overview of the formulation and numerics of the MIT GCM. Pp. 139–150 in Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling. September 6–10, 2004, ECMWF, Shinfield Park, Reading.
  1. Bebieva, Y., and M.-L. Timmermans. 2016. An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean. Journal of Geophysical Research 121:457–475, https://doi.org/10.1002/2015JC011105.
  2. Carrieres, T., M. Buehner, J.-F. Lemieux, and L.T. Pedersen. In press. Sea Ice Analysis and Forecasting. Cambridge University Press, Cambridge, UK.
  3. Cole, S., C. Wortham, E. Kunze, and W. Owens. 2015. Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophysical Research Letters 42:3,989–3,997, https://doi.org/​10.1002/2015GL063827.
  4. Edwards, C.A., A.M. Moore, I. Hoteit, and B.D. Cornuelle. 2015. Regional ocean data assimilation. Annual Review of Marine Science 7(1):21–42, https://doi.org/10.1146/annurev-marine-010814-015821.
  5. Fenty, I., and P. Heimbach. 2013. Coupled sea ice–ocean-state estimation in the Labrador Sea and Baffin Bay. Journal of Physical Oceanography 43:884–904, https://doi.org/10.1175/JPO-D-12-065.1.
  6. Fer, I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the Central Arctic. Atmospheric and Oceanic Science Letters 2:148–152, https://doi.org/​10.1080/16742834.2009.11446789.
  7. Forget, G., J. Campin, P. Heimbach, C. Hill, R. Ponte, and C. Wunsch. 2015a. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development 8:3,071–3,104, https://doi.org/10.5194/gmd-8-3071-2015.
  8. Forget, G., D. Ferreira, and X. Liang. 2015b. On the observability of turbulent transport rates by Argo: Supporting evidence from an inversion experiment. Ocean Science 11:839–853, https://doi.org/10.5194/os-11-839-2015.
  9. Forget, G., and C. Wunsch. 2007. Estimated global hydrographic variability. Journal of Physical Oceanography 37(8):1,997–2,008, https://doi.org/10.1175/JPO3072.1.
  10. Freitag, L., K. Ball, J. Partan, P. Koski, and S. Singh. 2015. Long range acoustic communications and navigation in the Arctic. Pp. 1–5 in 2015 MTS/IEEE OCEANS, Washington, DC, https://doi.org/10.23919/OCEANS.2015.7401956.
  11. Heimbach, P., C. Wunsch, R.M. Ponte, G. Forget, C. Hill, and J. Utke. 2011. Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep Sea Research Part II 58:1,858–1,879, https://doi.org/10.1016/j.dsr2.2010.10.065.
  12. Holloway, G., F. Dupont, E. Golubeva, S. Hakkinen, E. Hunke, M. Jin, M. Karcher, F. Kauker, M. Maltrud, M.M. Maqueda, and others. 2007. Water properties and circulation in Arctic Ocean models. Journal of Geophysical Research 112, C04S03, https://doi.org/10.1029/2006JC003642.
  13. Ilicak, M., H. Drange, Q. Wang, R. Gerdes, Y. Aksenov, D. Bailey, M. Bentsen, A. Biastoch, A. Bozec, C. Böning, and others. 2016. An assessment of the Arctic Ocean hydrography in a suite of interannual CORE-II simulations: Part III. Hydrography and fluxes. Ocean Modelling 100:141–161, https://doi.org/10.1016/​j.ocemod.2016.02.004.
  14. Jones, C., A. Morozov, and J.E. Manley. 2013. Under ice positioning and communications for unmanned vehicles. Pp. 1–6 in 2013 MTS/IEEE OCEANS - Bergen, https://doi.org/10.1109/OCEANS-Bergen.2013.6607978.
  15. Killworth, P. 1998. Something stirs in the deep. Nature 396:720–721, https://doi.org/​10.1038/25444.
  16. Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, and others. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan 93:5–48, https://doi.org/10.2151/jmsj.2015-001.
  17. Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans. 2008. Automated Ice-Tethered Profilers for seawater observations under pack ice in all seasons. Journal of Atmospheric and Oceanic Technology 25:2,091–2,105, https://doi.org/​10.1175/2008JTECHO587.1.
  18. Kunze, E., E. Firing, J. Hummon, T. Chereskin, and A. Thurnherr. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography 36:1,553–1,576, https://doi.org/10.1175/JPO2926.1.
  19. Laxon, S., K. Giles, A. Ridout, D. Wingham, R. Willatt, R. Cullen, R. Kwok, A. Schweiger, J. Zhang, C. Haas, and others. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters 40:732–737, https://doi.org/10.1002/grl.50193.
  20. Ledwell, J., A. Watson, and C. Law. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364:701–703, https://doi.org/10.1038/364701a0.
  21. Lee, C.M., S. Cole, M. Doble, L. Freitag, P. Hwang, S. Jayne, M. Jeffries, R. Krishfield, T. Maksym, W. Maslowski, and others. 2012. Marginal Ice Zone (MIZ) Program: Science and Experiment Plan. Technical Report APL/UW 1201. Applied Physics Laboratory, University of Washington, Seattle, 48 pp.
  22. Lee, C.M., H. Melling, H. Eicken, P. Schlosser, J.-C. Gascard, A. Proshutinsky, E. Fahrbach, C. Mauritzen, J. Morison, and I. Polyakov. 2010. Autonomous platforms in the Arctic Observing Network. Proceedings of OceanObs09: Sustained Ocean Observations and Information for Society, vol.2. Venice, Italy, September 21–25, 2009. J. Hall, D. Harrison, and D. Stammer, eds, ESA, https://doi.org/10.5270/OceanObs09.cwp.54.
  23. Lee, C.M., J. Thomson, and the Marginal Ice Zone and Arctic Sea State Teams. 2017. An autonomous approach to observing the seasonal ice zone in the western Arctic. Oceanography 30(2):56–68, https://doi.org/10.5670/oceanog.2017.222.
  24. Liu, C., A. Köhl, and D. Stammer. 2012. Adjoint-based estimation of eddy-​induced tracer mixing parameters in the global ocean. Journal of Physical Oceanography 42:1,186–1,206, https://doi.org/10.1175/JPO-D-11-0162.1.
  25. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-​volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research 102:5,753–5,766, https://doi.org/​10.1029/96JC02775.
  26. Mikhalevsky, P., H. Sagen, P. Worcester, A. Baggeroer, J. Orcutt, S. Moore, C. Lee, K. Vigness-Raposa, L. Freitag, M. Arrott, and others. 2015. Multipurpose acoustic networks in the integrated Arctic Ocean observing system. ARCTIC 68:11–27, https://doi.org/10.14430/arctic4449.
  27. Munk, W.H. 1966. Abyssal recipes. Deep Sea Research Part I 13:707–730, https://doi.org/10.1016/0011-7471(66)90602-4.
  28. Munk, W., and C. Wunsch. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I 45:1,977–2,010, https://doi.org/10.1016/S0967-0637(98)00070-3.
  29. Nguyen, A.T., D. Menemenlis, and R. Kwok. 2011. Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. Journal of Geophysical Research 116, C04025, https://doi.org/10.1029/2010JC006573.
  30. Padman, L., and T.M. Dillon. 1987. Vertical heat fluxes through the Beaufort Sea thermohaline staircase. Journal of Geophysical Research 92:10,799–10,806, https://doi.org/10.1029/JC092iC10p10799.
  31. Pillar, H.R., P. Heimbach, H.L. Johnson, and D.P. Marshall. 2016. Dynamical attribution of recent variability in Atlantic overturning. Journal of Climate 29:3,339–3,352, https://doi.org/10.1175/JCLI-D-15-0727.1.
  32. Polyakov, I.V., A.V. Pnyushkov, R. Rember, V.V. Ivanov, Y.-D. Lenn, L. Padman, and E.C. Carmack. 2011. Mooring-based observations of double-diffusive staircases over the Laptev Sea slope. Journal of Physical Oceanography 42:95–109, https://doi.org/10.1175/2011JPO4606.1.
  33. Purokoski, T., E. Aro, and A. Nummelin. 2013. First long-term deployment of Argo float in Baltic Sea. Sea Technology 54:41–44.
  34. Riser, S.C., H.J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbeoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change 6:145–153, https://doi.org/​10.1038/NCLIMATE2872.
  35. Rudnick, D.L. 2016. Ocean research enabled by underwater gliders. Annual Review of Marine Science 8:519–541, https://doi.org/10.1146/annurev-marine-122414-033913.
  36. Schmidt, H., and T. Schneider. 2016. Acoustic communication and navigation in the new Arctic: A model case for environmental adaptation. Pp. 1–4 in 2016 IEEE Third Underwater Communications and Networking Conference (UComms), https://doi.org/10.1109/UComms.2016.7583469.
  37. Stammer, D. 2005. Adjusting internal model errors through ocean state estimation. Journal of Physical Oceanography 35:1,143–1,153, https://doi.org/10.1175/JPO2733.1.
  38. Stammer, D., M. Balmaseda, P. Heimbach, A. Köhl, and A. Weaver. 2016. Ocean data assimilation in support of climate applications: Status and perspectives. Annual Review of Marine Science 8:491–518, https://doi.org/10.1146/annurev-marine-122414-034113.
  39. Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotze, A. Adcroft, C.N. Hill, and J. Marshall. 2002. Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. Journal of Geophysical Research 107(C9), 3118, https://doi.org/10.1029/2001JC000888.
  40. Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor. 2008. Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. Journal of Geophysical Research, 113, C00A02, https://doi.org/​10.1029/2008JC004829.
  41. Toole, J.M., R.A. Krishfield, and M.-L. Timmermans. 2011. The Ice-Tethered Profiler: Argo of the Arctic. Oceanography 24(3):126–135, https://doi.org/10.5670/oceanog.2011.64.
  42. Watkins, M., D. Wiese, D.-N. Yuan, C. Boening, and F. Landerer. 2015. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research 120:2,648–2,671, https://doi.org/10.1002/2014JB011547.
  43. Watson, A., J. Ledwell, M.-J. Messias, B. King, N. Mackay, M. Meredith, B. Mills, and A. Garabato. 2013. Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501:408–411, https://doi.org/​10.1038/nature12432.
  44. Westerlund, A., and L. Tuomi. 2016. Vertical temperature dynamics in the northern Baltic Sea based on 3D modelling and data from shallow-​water Argo floats. Journal of Marine Systems 158:34–44, https://doi.org/10.1016/​j.jmarsys.2016.01.006.
  45. Whalen, C.B., L.D. Talley, and J.A. MacKinnon. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophysical Research Letters 39, L18612, https://doi.org/10.1029/2012GL053196.
  46. Wong, A.P.S., and S.C. Riser. 2011. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. Journal of Physical Oceanography 41:1,102–1,115, https://doi.org/10.1175/2011JPO4516.1.
  47. Wunsch, C., and P. Heimbach. 2007. Practical global oceanic state estimation. Physica D 230:197–208, https://doi.org/10.1016/j.physd.2006.09.040.
  48. Wunsch, C., and P. Heimbach. 2013. Dynamically and kinematically consistent global ocean circulation and ice state estimates. Pp. 553–579 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S. Griffies, J. Gould, and J. Church, eds, vol. 103 of International Geophysics, Oxford, UK, Academic Press.
  49. Zhang, J., and M. Steele. 2007. Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. Journal of Geophysical Research 112, C04S04, https://doi.org/10.1029/2006JC003732.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.