Oceanography The Official Magazine of
The Oceanography Society
Volume 29 Issue 02

View Issue TOC
Volume 29, No. 2
Pages 264 - 272

OpenAccess

Oceanography Surrounding Krakatau Volcano in the Sunda Strait, Indonesia

By R. Dwi Susanto , Zexun Wei , T. Rameyo Adi , Quanan Zheng, Guohong Fang, Bin Fan, Agus Supangat, Teguh Agustiadi , Shujiang Li , Mukti Trenggono, and Agus Setiawan 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Seasonal variability of water properties obtained from conductivity-temperature-depth casts from 2008 to 2015 and current velocities obtained from moorings deployed from 2008 to 2009 show that the Sunda Strait plays dual roles in water exchange between the Pacific and Indian Oceans. The Sunda Strait current velocity is strongly affected by seasonal monsoon winds. During the boreal winter monsoon, northwesterly winds to the north and south of Java draw waters from the Indian Ocean into the Java Sea, and at the same time, the Java Sea receives an influx of low-salinity water from the South China Sea. Summation of these waters would reduce the main Indonesian Throughflow transport in the Makassar Strait. Conditions are reversed during the summer monsoon: higher-temperature, lower-salinity, and lower-density waters from the Java Sea are exported to the Indian Ocean through the Sunda Strait, enhancing Indonesian Throughflow transport from the Pacific into the Indian Ocean. Variations in temperature, salinity, and density are greater during the boreal summer than those observed during the winter monsoon. Kelvin-wave-like signals have been observed in the velocity time series data; however, further investigation in this region is needed to confirm the possibility of Kelvin waves entering the Sunda Strait.

Citation

Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, B. Fan, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, and A. Setiawan. 2016. Oceanography surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29(2):264–272, https://doi.org/10.5670/oceanog.2016.31.

References
    Aldrian, E., and R.D. Susanto. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology 23(12):1,435­–1,452, https://doi.org/10.1002/joc.950.
  1. Arief, D., and S. Murray. 1996. Low-frequency fluctuations in the Indonesian throughflow through Lombok Strait. Journal of Geophysical Research 101:12,455–12,464, https://doi.org/​10.1029/96JC00051.
  2. Bryden, H.L., and S. Imawaki. 2001. Ocean transport of heat. Pp. 455–475 in Ocean Circulation and Climate. G.J. Siedler, J. Church, and J. Gould, eds, Academic Press, San Diego, CA. 
  3. Drushka, K., J. Sprintall, S.T. Gille, and I. Brodjonegoro. 2010. Vertical structure of Kelvin waves in the Indonesian throughflow exit passages. Journal of Physical Oceanography 40:1,965–1,987, https://doi.org/10.1175/2010JPO4380.1.
  4. Duchon, C. 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology 18:1,016–1,022, https://doi.org/​10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
  5. Fang, G., R.D. Susanto, I. Soesilo, Q. Zheng, F. Qiao, and W. Zexun. 2005. A note on the South China Sea shallow interocean circulation. Advances in Atmospheric Sciences 22:946–954, https://doi.org/10.1007/BF02918693.
  6. Fang, G., R.D. Susanto, S. Wirasantosa, F. Qiao, A. Supangat, B. Fan, Z. Wei, B. Sulistiyo, and S. Li. 2010. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. Journal of Geophysical Research 115, C12020, https://doi.org/10.1029/2010JC006225.
  7. Fang, G., Y. Wang, Z. Wei, Y. Fang, F. Qiao, and X. Hu. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmospheres and Oceans 47:55–72, https://doi.org/10.1016/​j.dynatmoce.2008.09.003.
  8. Gentle, J.E. 2003. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer, New York.
  9. Godfrey, J.S. 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. Journal of Geophysical Research 101(C5):12,217–12,237, https://doi.org/10.1029/95JC03860.
  10. Gordon, A.L., B.A. Huber, E.J. Metzger, R.D. Susanto, H.E. Hurlburt, and T.R. Adi. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters 33(11), https://doi.org/10.1029/2012GL052021.
  11. Gordon, A., J. Sprintall, H. van Aken, R.D. Susanto, S. Wijffels, R. Molcard, A. Ffield, and W. Pranowo. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans 50(2):113–114, https://doi.org/10.1016/​j.dynatmoce.2009.12.002.
  12. Gordon, A., R.D. Susanto, A. Ffield, B. Huber, W. Pranowo, and S. Wirasantosa. 2008. Makassar Strait throughflow 2004 to 2006. Geophysical Research Letters 35, L24605, https://doi.org/​10.1029/2008GL036372.
  13. Gordon, A.L., R.D. Susanto, and K. Vranes. 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425:824–828, https://doi.org/10.1038/nature02038.
  14. Iskandar, I., W. Mardiansyah, Y. Masumoto, and T. Yamagata. 2005. Intraseasonal Kelvin waves along the southern coast of Sumatra and Java. Journal of Geophysical Research 110, C04013, https://doi.org/10.1029/2004JC002508.
  15. Lee, S.-K., W. Park, M.O. Baringer, A.L. Gordon, B. Huber, and Y. Liu. 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience 8:445–449, https://doi.org/10.1038/ngeo2438.
  16. Lee, T., I. Fukumori, D. Menemenlis, Z. Xing, and L.L. Fu. 2002. Effects of the Indonesian throughflow on the Pacific and Indian Oceans. Journal of Physical Oceanography 32:1,404–1,429, https://doi.org/10.1175/1520-0485(2002)032​<1404:EOTITO>2.0.CO;2.
  17. Lee, T., and M.J. McPhaden. 2008. Decadal phase changes in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophysical Research Letters 35, L01605, https://doi.org/10.1029/2007GL032419.
  18. Madden, R.A., and P.R. Julian. 1994. Observations of the 40–50-day tropical oscillation: A review. Monthly Weather Review 122:814–837, https://doi.org/10.1175/1520-0493(1994)122​<0814:OOTDTO>2.0.CO;2.
  19. Murray, S.P., and D. Arief. 1988. Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature 333:444–447, https://doi.org/10.1038/333444a0
  20. Nagura, M., and M.J. McPhaden. 2010. Wyrtki Jet dynamics: Seasonal variability. Journal of Geophysical Research 115, C07009, https://doi.org/10.1029/2009JC005922.
  21. Pond, S., and G.L. Pickard. 1983. Introductory Dynamical Oceanography, 2nd ed. Butterworth-Heinemann Ltd., Oxford.
  22. Potemra, J.T., S.L. Hautala, J. Sprintall, and W. Pandoe. 2002. Interaction between the Indonesian Seas and the Indian Ocean in observations and numerical models. Journal of Physical Oceanography 32:1,838–1,854, https://doi.org/10.1175/1520-0485(2002)032​<1838:IBTISA>2.0.CO;2.
  23. Reed, C. 2015. Tracking the missing heat from the global warming hiatus. Eos, 96, https://doi.org/​10.1029/2015EO029947. Published on May 21, 2015.
  24. Qiu, Y., L. Li, and W. Yu. 2009. Behavior of the Wyrtki Jet observed with surface drifting buoys and satellite altimeter. Geophysical Research Letters 36, L18607, https://doi.org/10.1029/2009GL039120
  25. Qu, T., D. Yan, and H. Sasaki. 2006. South China Sea throughflow: A heat and freshwater conveyor. Geophysical Research Letters 33, L23617, https://doi.org/10.1029/2006GL028350.
  26. Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata. 1999. A dipole mode in the tropical Indian Ocean. Nature 401:360–363, https://doi.org/10.1038/43854.
  27. Schneider, N. 1998. The Indonesian throughflow and the global climate system. Journal of Climate 11:676–689, https://doi.org/10.1175/​1520-0442(1998)011<0676:TITATG>2.0.CO;2.
  28. Shinoda, T., W. Han, E.J. Metzger, and H. Hurlburt. 2012. Seasonal variation of the Indonesian throughflow in Makassar Strait. Journal of Physical Oceanography 42:1,099–1,123, https://doi.org/​10.1175/JPO-D-11-0120.1.
  29. Simkin, T., and R.S. Fiske. 1983. Krakatau, 1883: The Volcanic Eruption and Its Effects. Smithsonian Institution Press, Washington, DC, 464 pp.
  30. Sprintall, J., J. Chong, F. Syamsudin, W. Morawitz, S. Hautala, N. Bray, and S. Wijffels. 1999. Dynamics of the South Java current in the Indo-Australian Basin. Geophysical Research Letters 26:2,493–2,496, https://doi.org/​10.1029/1999GL002320.
  31. Sprintall, J., A.L. Gordon, A. Koch-Larrouy, T. Lee, J.T. Potemra, K. Pujiana, and S.E. Wijffels. 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience 7(7):487–492, https://doi.org/10.1038/ngeo2188.
  32. Sprintall, J., A.L. Gordon, R. Murtugudde, and R.D. Susanto. 2000. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. Journal of Geophysical Research 105:17,217–17,230, https://doi.org/​10.1029/2000JC900065.
  33. Sprintall, J., and W.T. Liu. 2005. Ekman mass and heat transport in the Indonesian Seas. Oceanography 18(4):88–97, https://doi.org/​10.5670/oceanog.2005.09.
  34. Sprintall, J., and A. Revelard. 2014. The Indonesian throughflow response to Indo-Pacific climate variability. Journal of Geophysical Research 119:1,161–1,175, https://doi.org/​10.1002/2013JC009533
  35. Sprintall, J., S.E. Wijffels, R. Molcard, and I. Jaya. 2009. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research 114, C07001, https://doi.org/10.1029/2008JC005257.
  36. Susanto, R.D., G. Fang, I. Soesilo, Q. Zheng, F. Qiao, Z. Wei, and B. Sulistyo. 2010. New surveys of a branch of the Indonesian throughflow. Eos, Transactions American Geophysical Union 91(30):261–263, https://doi.org/10.1029/​2010EO300002.
  37. Susanto, R.D., A. Ffield, A.L. Gordon, and T.R. Adi. 2012. Variability of Indonesian throughflow within Makassar Strait throughflow: 2004 to 2009. Geophysical Research Letters 117, C09013, https://doi.org/10.1029/2012JC008096.
  38. Susanto, R.D., A.L. Gordon, and J. Sprintall. 2007. Observations and proxies of the surface layer throughflow in Lombok Strait. Journal of Geophysical Research 112, C03S92, https://doi.org/10.1029/2006JC003790.
  39. Susanto, R.D., A.L. Gordon, J. Sprintall, and B. Herunadi. 2000. Intraseasonal variability and tides in Makassar Strait. Geophysical Research Letters 27:1,499–1,502, https://doi.org/10.1029/2000gl011414
  40. Susanto, R.D., A.L. Gordon, and Q. Zheng. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophysical Research Letters 28:1,599–1,602, https://doi.org/​10.1029/2000GL011844.
  41. Susanto, R.D., and J. Marra. 2005. Effect of the 1997/98 El Niño on chlorophyll a variability along the southern coasts of Java and Sumatra. Oceanography 18(4)124–127, https://doi.org/​10.5670/oceanog.2005.13.
  42. Susanto, R.D., T. Moore II, and J. Marra. 2006. An ocean color variability in the Indonesian Seas during the SeaWifs era. Geochemistry Geophysics Geosystems 7, Q05021, https://doi.org/10.1029/2005GC001009.
  43. Susanto, R.D., and Y.T. Song. 2015. Indonesian throughflow proxy from satellite altimeters and gravimeters Journal of Geophysical Research 120:2,844–2,855, https://doi.org/​10.1002/2014JC010382.
  44. Susanto, R.D, Z. Wei, T.R. Adi, B. Fan, S. Li, and G. Fang. 2013. Observations of the Karimata Strait throughflow from December 2007 to November 2008. Acta Oceanologica Sinica 32(5):1–6, https://doi.org/10.1007/s13131-013-0307-3.
  45. Syamsudin, F., A. Kaneko, and D.B. Haidvogel. 2004. Numerical and observational estimates of Indian Ocean Kelvin intrusion into Lombok Strait. Geophysical Research Letters 32, L24307, https://doi.org/10.1029/2004GL021227.
  46. Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y.M. Okumura. 2012. Regional patterns of tropical Indo-Pacific Climate change: Evidence of the Walker Circulation weakening. Journal of Climate, https://doi.org/10.1175/JCLI-D-11-00263.1.
  47. Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata. 2009. Impacts of the South China Sea throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dynamics of Atmospheres and Oceans 47:73–85, https://doi.org/​10.1016/j.dynatmoce.2008.09.001.
  48. van Aken, H.M., I.S. Brodjonegoro, and I. Jaya. 2009. The deep water motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Research Part I 56:1,203–1,216, https://doi.org/10.1016/​j.dsr.2009.02.001.
  49. Webster, P.J., A.M. Moore, J.P. Loschnigg, and R.R. Leben. 1999. Coupled ocean-​atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360, https://doi.org/​10.1038/​43848.
  50. Wei, Z.X., G.H. Fang, R.D. Susanto, T.R. Adi, B. Fan, A. Setiawan, S.J. Li, Y.G. Wang, and X.M. Gao. 2015. Tidal elevation, current and energy flux in the area between the South China Sea and Java Sea. Ocean Science 12:2,831–2,861, https://doi.org/​10.5194/osd-12-2831-2015.
  51. Wyrtki, K. 1973. An equatorial jet in the Indian Ocean. Science 181:262–264, https://doi.org/10.1126/science.181.4096.262.
  52. Wyrtki, K. 1987. Indonesian throughflow and the associated pressure gradient. Journal of Geophysical Research 92:12,941–12,946, https://doi.org/​10.1029/JC092iC12p12941.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.