Oceanography The Official Magazine of
The Oceanography Society
Volume 30 Issue 02

View Issue TOC
Volume 30, No. 2
Pages 126 - 127

Ocean Wave Energy for Long Endurance, Broad Bandwidth Ocean Monitoring

Andrew J. Lucas Robert PinkelMatthew Alford
First Paragraph

Ocean measurement systems—whether large distributed arrays, moving platforms, or discrete sensors—share a common general limit: the information content of the observations, quantified in terms of the number of octaves of wavenumber and frequency resolved, is roughly proportional to the energy available for the measurements. For example, an octave of resolution in the frequency domain can be added either by doubling the sampling rate of a sensor to better resolve high frequencies, or doubling the sampling duration to add an octave at low frequency. Both involve a doubling of energy, assuming a fixed energy per sample. Similar considerations apply in the wavenumber domain.

Citation

Lucas, A.J., R. Pinkel, and M. Alford. 2017. Ocean wave energy for long endurance, broad bandwidth ocean monitoring. Oceanography 30(2):126–127, https://doi.org/10.5670/oceanog.2017.232.

References

Feddersen, F., M. Olabarrieta, R.T. Guza, D. Winters, B. Raubenheimer, and S. Elgar. 2016. Observations and modeling of a tidal inlet dye tracer plume. Journal of Geophysical Research 121:7,819–7,844, https://doi.org/​10.1002/2016JC011922.

Lucas, A.J., P.J.S. Franks, and C.L. Dupont. 2011. Horizontal internal-tide fluxes support elevated phytoplankton productivity over the inner continental shelf. Limnology and Oceanography: Fluids and Environments 1:56–74, https://doi.org/10.1215/21573698-1258185.

Lucas, A.J., and R.M. Kudela. 2015. The fine-scale vertical variability of a wastewater plume in shallow, stratified coastal waters. Estuarine, Coastal, and Shelf Science 186:183–197, https://doi.org/10.1016/j.ecss.2015.08.010.

Lucas, A.J., J.D. Nash, R. Pinkel, J.A. MacKinnon, A. Tandon, A. Mahadevan, M.M. Omand, M. Freilich, D. Sengupta, M. Ravichandran, and A. Le Boyer. 2016. Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography 29(2):134–145, https://doi.org/10.5670/oceanog.2016.46.

Lucas, A.J., G.C. Pitcher, T.A. Probyn, and R.M. Kudela. 2014. The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep Sea Research Part II 101:50–62, https://doi.org/10.1016/​j.dsr2.2013.01.016.

Omand, M.M., I. Cetinić, and A.J. Lucas. 2017. Using bio-optics to reveal phytoplankton physiology from a Wirewalker autonomous platform. Oceanography 30(2):128–131, https://doi.org/10.5670/oceanog.2017.233.

Omand, M.M., J.J. Leichter, P.J.S. Franks, R.T. Guza, A.J. Lucas, and F. Feddersen. 2011. Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore. Limnology and Oceanography 56:787–801, https://doi.org/10.4319/lo.2011.56.3.0787.

Pinkel, R., M.A. Goldin, J.A. Smith, O.M. Sun, A.A. Aja, M.N. Bui, and T. Hughen. 2011. The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. Journal of Atmospheric And Oceanic Technology 28:426–435, https://doi.org/10.1175/2010JTECHO805.1.

Rainville, L., and R. Pinkel. 2001. The Wirewalker: An autonomous wave-powered vertical profiler. Journal of Atmospheric And Oceanic Technology 18:1,048–1,051, https://doi.org/10.1175/1520-0426(2001)018​<1048:WAAWPV>2.0.CO;2.