Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 01

View Issue TOC
Volume 28, No. 1
Pages 20 - 31

OpenAccess

Ocean Salinity and the Global Water Cycle

By Paul J. Durack  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Alterations to the global water cycle are of concern as Earth’s climate changes. Although policymakers are mainly interested in changes to terrestrial rainfall—where, when, and how much it’s going to rain—the largest component of the global water cycle operates over the ocean where nearly all of Earth’s free water resides. Approximately 80% of Earth’s surface freshwater fluxes occur over the ocean; its surface salinity responds to changing evaporation and precipitation patterns by displaying salty or fresh anomalies. The salinity field integrates sporadic surface fluxes over time, and after accounting for ocean circulation and mixing, salinity changes resulting from long-term alterations to surface evaporation and precipitation are evident. Thus, ocean salinity measurements can provide insights into water-cycle operation and its long-term change. Although poor observational coverage and an incomplete view of the interaction of all water-cycle components limits our understanding, climate models are beginning to provide insights that are complementing observations. This new information suggests that the global water cycle is rapidly intensifying.

Citation

Durack, P.J. 2015. Ocean salinity and the global water cycle. Oceanography 28(1):20–31, https://doi.org/​10.5670/oceanog.2015.03.

References
    Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, and others. 2003. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology 4:1,147–1,167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
  1. Allen, M.R., and W.J. Ingram. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232, https://doi.org/10.1038/nature01092.
  2. Antonov, J.I., S. Levitus, and T.P. Boyer. 2002. Steric sea level variations during 1957–1994: Importance of salinity. Journal of Geophysical Research 107(C12), 8013, https://doi.org/10.1029/2001JC000964.
  3. Baumgartner, A., and E. Reichel. 1975. The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff. Elsevier Science Ltd. Amsterdam, 179 pp.
  4. Belkin, I.M., S. Levitus, J. Antonov, and S.-A. Malmberg. 1998. “Great Salinity Anomalies” in the North Atlantic. Progress in Oceanography 41:1–68, https://doi.org/10.1016/S0079-6611(98)00015-9.
  5. Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. 2013. ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dynamics 42:1,999–2,018, https://doi.org/10.1007/s00382-013-1783-z.
  6. Berger, M., A. Camps, J. Font, Y. Berr, J. Miller, J. Johannessen, J. Boutin, M.R. Drinkwater, N. Skou, N. Floury, and others. 2002. Measuring ocean salinity with ESA’s SMOS Mission. ESA Bulletin 111:113–121, http://esamultimedia.esa.int/docs/Cryosat/ESABulletin111-SMOSOSactivities.pdf.
  7. Bouttes, N., J.M. Gregory, T. Kuhlbrodt, and R.S. Smith. 2013. The drivers of projected North Atlantic sea level change. Climate Dynamics 43:1,531–1,544, https://doi.org/10.1007/s00382-013-1973-8.
  8. Bouttes, N., J.M. Gregory, T. Kuhlbrodt, and T. Suzuki. 2012. The effect of windstress change on future sea level change in the Southern Ocean. Geophysical Research Letters 39, L23602, https://doi.org/10.1029/2012GL054207.
  9. Boyer, T.P., J.I. Antonov, O.K. Baranova, C. Coleman, H.E. Garcia, A. Grodsky, D.R. Johnson, R.A. Locarnini, A.V. Mishonov, T.D. O’Brien, and others. 2013. World Ocean Database 2013. S. Levitus, ed., A. Mishonov, technical ed., NOAA Atlas NESDIS 72, 209 pp., http://data.nodc.noaa.gov/woa/WOD13/DOC/wod13_intro.pdf.
  10. Boyer, T.P., S. Levitus, J.I. Antonov, R.A. Locarnini, and H.E. Garcia. 2005. Linear trends in salinity for the world ocean, 1955–1998. Geophysical Research Letters 32, L01604, https://doi.org/10.1029/2004GL021791.
  11. Bullister, J.L., M. Rhein, and C. Mauritzen. 2013. Deepwater formation. Pp. 227–253 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00010-6.
  12. Chen, J., R. Zhang, H. Wang, Y. An, P. Peng, and W. Zhang. 2012. Isolation of sea surface salinity maps on various timescales in the tropical Pacific Ocean. Journal of Oceanography 68(5):687–701, https://doi.org/10.1007/s10872-012-0126-8.
  13. Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, and others. 2013. Sea level change. Pp. 1,137–1,216 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY, https://doi.org/10.1017/CBO9781107415324.026.
  14. Cravatte, S., T. Delcroix, D. Zhang, M. McPhaden, and J. LeLoup. 2009. Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics 33:565–589, https://doi.org/10.1007/s00382-009-0526-7.
  15. Curry, R., B. Dickson, and I. Yashayaev. 2003. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829, https://doi.org/10.1038/nature02206.
  16. Delcroix, T., S. Cravatte, and M.J. McPhaden. 2007. Decadal variations and trends in tropical Pacific sea surface salinity since 1970. Journal of Geophysical Research 112, C03012, https://doi.org/10.1029/2006JC003801.
  17. Dickson, R.R., J. Meincke, S.-A. Malmberg, and A.J. Lee. 1988. The “great salinity anomaly” in the Northern North Atlantic 1968–1982. Progress in Oceanography 20:103–151, https://doi.org/10.1016/0079-6611(88)90049-3.
  18. Durack, P.J., P.J. Gleckler, F.W. Landerer, and K.E. Taylor. 2014a. Quantifying underestimates of long-term upper-ocean warming. Nature Climate Change 4:999–1,005, https://doi.org/10.1038/nclimate2389.
  19. Durack, P.J., and S.E. Wijffels. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate 23:4,342–4,362, https://doi.org/10.1175/2010JCLI3377.1.
  20. Durack, P.J., S.E. Wijffels, and T.P. Boyer. 2013. Long-term salinity changes and implications for the global water cycle. Pp. 727–757 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00028-3.
  21. Durack, P.J., S.E. Wijffels, and P.J. Gleckler. 2014b. Long-term sea-level change revisited: The role of salinity. Environmental Research Letters 9, 114017, https://doi.org/10.1088/1748-9326/9/11/114017.
  22. Durack, P.J., S.E. Wijffels, and R.J. Matear. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458, https://doi.org/10.1126/science.1212222.
  23. Farrar, J.T., R. Schmitt, L. Rainville, W. Asher, B. Hodges, A. Jessup, F. Bingham, A. Shcherbina, W.S. Kessler, L. Centurioni, and others. 2014. SPURS-2: Diagnosing the Physics of a Rainfall-Dominated Salinity Minimum. Report of a Workshop in Pasadena, April 16–18 2014. 17 pp., http://spurs.jpl.nasa.gov/pdf/SPURS-2_WhitePaper_v12rev.pdf.
  24. Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring, and others. 2013. Evaluation of climate models. Pp. 741–866 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY, https://doi.org/10.1017/CBO9781107415324.020.
  25. Freeland, H., K. Denman, C.S. Wong, F. Whitney, and R. Jacques. 1997. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean. Deep-Sea Research Part I 44(12):2,117–2,129, https://doi.org/10.1016/S0967-0637(97)00083-6.
  26. Gille, S.T. 2008. Decadal-scale temperature trends in the Southern Hemisphere ocean. Journal of Climate 21:4,749–4,765, https://doi.org/10.1175/2008JCLI2131.1.
  27. Gimeno, L., A. Drumon, R. Nieto, R.M. Trigo, and A. Stohl. 2010. On the origin of continental precipitation. Geophysical Research Letters 37, L13804, https://doi.org/10.1029/2010GL043712.
  28. Good, S.A., M.J. Martin, and N.A. Rayner. 2014. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research 118:6,704–6,716, https://doi.org/10.1002/2013JC009067.
  29. Gordon, A.L., and C.F. Giulivi. 2008. Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography 21(1):20–29, https://doi.org/10.5670/oceanog.2008.64.
  30. Gould, J., D. Roemmich, S. Wijffels, H. Freeland, N. Ignaszewsky, X. Jianping, S. Pouliquen, Y. Desaubies, U. Send, K. Radhakrishnan, and others. 2004. Argo profiling floats bring new era of in situ ocean observations. Eos, Transactions American Geophysical Union 85(19):185, https://doi.org/10.1029/2004EO190002.
  31. Gould, J., B. Sloyan, and M. Visbeck. 2013. In situ ocean observations: A brief history, present status, and future directions. Pp. 59–81 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00003-9.
  32. Gouretski, V., and K.P. Koltermann. 2007. How much is the ocean really warming? Geophysical Research Letters 34, L01610, https://doi.org/10.1029/2006GL027834
  33. Gregory, J.M., H.T. Banks, P.A. Stott, J.A. Lowe, and M.D. Palmer. 2004. Simulated and observed decadal variability in ocean heat content. Geophysical Research Letters 31, L15312, https://doi.org/10.1029/2004GL020258.
  34. Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Recihstein, and S.I. Seneviratne. 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience 7:716–721, https://doi.org/10.1038/ngeo2247.
  35. Grodsky, S.A., N. Reul, G. Lagerloef, G. Reverdin, J.A. Carton, B. Chapron, Y. Quilfen, V.N. Kudryavtsev, and H.-Y. Kao. 2012. Haline hurricane wake in the Amazon/Orinco plume: AQUARIUS/SACD and SMOS observations. Geophysical Research Letters 39, L20603, https://doi.org/10.1029/2012GL053335.
  36. Hegerl, G.C., E. Black, R.P. Allan, W.J. Ingram, D. Polson, K.E. Trenberth, R.S. Chadwick, P.A. Arkin, B.B. Sarojini, A. Becker, and others. 2014. Challenges in quantifying changes in the global water cycle. Bulletin of the Meteorological Society, https://doi.org/10.1175/BAMS-D-13-00212.1.
  37. Held, I.M., and B.J. Soden. 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate 19:5,686–5,699, https://doi.org/10.1175/JCLI3990.1.
  38. Helm, K.P., N.L. Bindoff, and J.A. Church. 2010. Changes in the global hydrological-cycle inferred from ocean salinity. Geophysical Research Letters 37, L18701, https://doi.org/10.1029/2010GL044222.
  39. Holland, H.D. 1972. The geologic history of sea water: An attempt to solve the problem. Geochimica et Cosmochimica Acta 36(6):637–651, https://doi.org/10.1016/0016-7037(72)90108-1.
  40. Hosoda, S., T. Suga, N. Shikama, and K. Mizuno. 2009. Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. Journal of Oceanography 65:579–596, https://doi.org/10.1007/s10872-009-0049-1.
  41. Huffman, G.J., R.F. Adler, P. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider. 1997. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bulletin of the American Meteorology Society 78:5–20, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.
  42. Huffman, G.J., D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, Y. Hong, K.P. Bowman, and E.F. Stocker. 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8:38–55, https://doi.org/10.1175/JHM560.1.
  43. Ishii, M., and M. Kimoto. 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. Journal of Oceanography 65:287–299, https://doi.org/10.1007/s10872-009-0027-7.
  44. Ishii, M., M. Kimoto, K. Sakamoto, and S.-I. Iwasaki. 2006. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. Journal of Oceanography 62:155–170, https://doi.org/10.1007/s10872-006-0041-y.
  45. Johnson, G.C., and J.M. Lyman. 2007. Global oceans: Sea surface salinity. Supplement to State of the Climate in 2006. A. Arguez, ed. Bulletin of the American Meteorological Society 88:s34–s35, https://doi.org/10.1175/BAMS-88-6-StateoftheClimate.
  46. Josey, S.A., S. Gulev, and L. Yu. 2013. Exchanges through the ocean surface. Pp 115–140 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00005-2.
  47. Kidd, C., and G. Huffman. 2011. Global precipitation measurement. Meteorological Applications 18:34–353.
  48. Kirtman, B.P., T. Stockdale, and R. Burgman. 2013. The ocean’s role in modeling and predicting seasonal-to-interannual climate variations. Pp. 625–643 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00024-6.
  49. Lagerloef, G., F.R. Colomb, D. Le Vine, F. Wentz, S. Yueh, C. Ruf, J. Lilly, J. Gunn, Y. Chao, A. deCharon, and others. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography 21(1):68–81, https://doi.org/10.5670/oceanog.2008.68.
  50. Lagerloef, G., F. Wentz, S. Yueh, H.-Y. Kao, G.C. Johnson, and J.M. Lyman. 2012. Global oceans: Aquarius satellite mission provides new detailed view of sea surface salinity. Supplement to State of the Climate 2011. J. Blunden and D.S. Arndt, eds. Bulletin of the American Meteorology Society 97:S70–S71, https://doi.org/10.1175/2012BAMSStateoftheClimate.1.
  51. Latif, M. 2013. The ocean’s role in modeling and predicting decadal climate variations. Pp. 645–665 in Ocean Circulation and Climate: A 21st Century Perspective. G. Siedler, S.M. Griffies, J. Gould, and J.A. Church, eds, International Geophysics, vol. 103, Academic Press, Elsevier, Oxford, UK, https://doi.org/10.1016/B978-0-12-391851-2.00025-8.
  52. Lee, T., G. Lagerloef, M.M. Gierach, H.-Y. Kao, S. Yueh, and K. Dohan. 2012. Aquarius reveals salinity structure of tropical instability waves. Geophysical Research Letters 39, L12610, https://doi.org/10.1029/2012GL052232.
  53. Levitus, S., J.I. Antonov, T.P. Boyer, H.E. Garcia, and R.A. Locarnini. 2005. Linear trends of zonally averaged thermosteric, halosteric and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophysical Research Letters 32, L16601, https://doi.org/10.1029/2005GL023761.
  54. Li, G., and S.-P. Xie. 2014. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. Journal of Climate 27:1,765–1,780, https://doi.org/10.1175/JCLI-D-13-00337.1.
  55. Lin, J.-L. 2007. The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. Journal of Climate 20:4,497–4,525, https://doi.org/10.1175/JCLI4272.1.
  56. Maidment, R.I., D. Grimes, R.P. Allan, E. Tarnavsky, M. Stringer, T. Hewison, R. Roebeling, and E. Black. 2014. The 30 year TAMSAT African Rainfall Climatology and Time series (TARCAT) data set. Journal of Geophysical Research: Atmospheres 119:10,619–10,644, https://doi.org/10.1002/2014JD021927.
  57. Polade, S.D., A. Gershunov, D.R. Cayan, M.D. Dettinger, and D.W. Pierce. 2013. Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophysical Research Letters 40:2,296–2,301, https://doi.org/10.1002/grl.50491.
  58. Reverdin, G. 2010. North Atlantic subpolar gyre surface variability (1895-2009). Journal of Climate 23:4,571–4,584, https://doi.org/10.1175/2010JCLI3493.1.
  59. Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, G.C. Johnson, S.A. Josey, A. Kostianoy, and others. 2013. Observations: Ocean. Pp. 255–315 in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds, Cambridge University Press, Cambridge, UK, and New York, NY, https://doi.org/10.1017/CBO9781107415324.010.
  60. Richter, I., and S.-P. Xie. 2008. On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dynamics 31:587–598, https://doi.org/10.1007/s00382-008-0364-z.
  61. Roemmich, D., and J. Gilson. 2009. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Progress in Oceanography 82:81–100, https://doi.org/10.1016/j.pocean.2009.03.004.
  62. Rubey, W.W. 1951. Geologic history of sea water: An attempt to state the problem. Bulletin of the Geological Society of America 62(9):1,111–1,148, https://doi.org/10.1130/0016-7606(1951)62[1111:GHOSW]2.0.CO;2.
  63. Schanze, J.J., R.W. Schmitt, and L.L. Yu. 2010. The global oceanic freshwater cycle: A state-of-the-art quantification. Journal of Marine Research 68:569–595, https://doi.org/10.1357/002224010794657164.
  64. Schmitt, R.W. 1995. The ocean component of the global water cycle. Reviews of Geophysics 33(S2):1,395–1,409, https://doi.org/10.1029/95RG00184.
  65. Schmitt, R.W. 2008. Salinity and the global water cycle. Oceanography 21(1):12–19, https://doi.org/10.5670/oceanog.2008.63.
  66. Skliris, N., R. Marsh, S.A. Josey, S.A. Good, C. Liu, and R.P. Allan. 2014. Salinity changes in the world ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics 43:709–736, https://doi.org/10.1007/s00382-014-2131-7.
  67. Steffen, K., R.H. Thomas, E. Rignot, J.G. Cogley, M.B. Dyurgerov, S.C.B. Raper, P. Huybrechts, and E. Hanna. 2010. Cryospheric contributions to sea-level rise and variability. Pp. 178–225 in Understanding Sea-Level Rise and Variability. J.A. Church, P.L. Woodworth, T. Aarup, and W.S. Wilson, eds, Wiley-Blackwell, Oxford, UK, https://doi.org/10.1002/9781444323276.
  68. Talley, L.D. 2008. Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography 78:257–303, https://doi.org/10.1016/j.pocean.2008.05.001.
  69. Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93:485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.
  70. Trenberth, K.E., L. Smith, T. Qian, A. Dai, and J. Fasullo. 2007. Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology 8:758–769, https://doi.org/10.1175/JHM600.1.
  71. van der Ent, R.J., and H.H. Savenije. 2013. Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resources Research 49:3,993–4,004, https://doi.org/10.1002/wrcr.20296.
  72. van der Ent, R.J., H.H.G. Savenije, B. Schaefli, and S.C. Steele-Dunne. 2010. Origin and fate of atmospheric moisture over continents. Water Resources Research 46(9), W09525, https://doi.org/10.1029/2010WR009127.
  73. von Schuckmann, K., F. Gaillard, and P.-Y. Le Traon. 2009. Global hydrographic variability patterns during 2003–2008. Journal of Geophysical Research 114(C9), C09007, https://doi.org/10.1029/2008JC005237.
  74. Williams, P.D., E. Guilyardi, G. Madec, S. Gualdi, and E. Scoccimarro. 2010. The role of mean ocean salinity in climate. Dynamics of Atmospheres and Oceans 49:108–123, https://doi.org/10.1016/j.dynatmoce.2009.02.001.
  75. Williams, P.D.E., Guilyardi, R.T. Sutton, J.M. Gregory, and G. Madec. 2006. On the climate response of the low-latitude Pacific Ocean to changes in the global freshwater cycle. Climate Dynamics 27:593–611, https://doi.org/10.1007/s00382-006-0151-7.
  76. Williams, P.D., E. Guilyardi, R. Sutton, J. Gregory, and G. Madec. 2007. A new feedback on climate change from the hydrological cycle. Geophysical Research Letters 34, L08706, https://doi.org/10.1029/2007GL029275.
  77. Wong, A.P.S, N.L. Bindoff, and J.A. Church. 1999. Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature 400:440–443, https://doi.org/10.1038/22733.
  78. Wüst, G. 1936. Oberflächensalzgehalt, Verdunstung und Niederschlag auf dem Weltmeere. Länderkundliche Forschung, Festschrift Norbert Krebs, 347–359.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.