Oceanography The Official Magazine of
The Oceanography Society
Volume 31 Issue 02

View Issue TOC
Volume 31, No. 2
Pages 100 - 108

Ocean-Ice Interactions in Inglefield Gulf: Early Results from NASA’s Oceans Melting Greenland Mission

Josh K. Willis Dustin CarrollIan FentyGurjot KohliAla KhazendarMatthew RutherfordNicole TrenholmMathieu Morlighem
Article Abstract

Tracy and Heilprin, marine-terminating glaciers that drain into the eastern end of Inglefield Gulf in northwest Greenland, exhibit remarkably different behaviors despite being adjacent systems. Losing mass since 1892, Tracy Glacier has dramatically accelerated, thinned, and retreated. Heilprin has retreated only slightly during the last century and has remained almost stationary in the most recent decade. Previous studies suggest that Tracy’s base is deeper than Heilprin’s at the calving front (over 600 m, as opposed to the 350 m depth at Heilprin), which exposes it to warmer subsurface waters, resulting in more rapid retreat. We investigate the local oceanographic conditions in Inglefield Gulf and their interactions with Tracy and Heilprin using data collected in 2016 and 2017 as part of NASA’s Oceans Melting Greenland mission. Based on improved estimates of the fjord geometry and 20 temperature and salinity profiles near the fronts of these two glaciers, we find clear evidence that fjord waters are modified by ocean-ice interactions with Tracy Glacier. We find that Tracy thinned by 9.9 m near its terminus between 2016 and 2017, while Heilprin thinned by only 1.8 m. Using a simple subglacial plume model, we find that Tracy’s deeper depth at the front results in a more vigorous entrainment of warm subsurface waters, leading to more rapid melting. Model results support the hypothesis that Tracy’s deeper front results in faster glacier retreat, despite the presence of a shallow sill (~300 m) that may prevent the warmest waters from reaching Tracy.


Willis, J.K., D. Carroll, I. Fenty, G. Kohli, A. Khazendar, M. Rutherford, N. Trenholm, and M. Morlighem. 2018. Ocean-ice interactions in Inglefield Gulf: Early results from NASA’s Oceans Melting Greenland mission. Oceanography 31(2):100–108, https://doi.org/10.5670/oceanog.2018.211.


Carroll, D., D.A. Sutherland, B. Hudson, T. Moon, G.A. Catania, E.L. Shroyer, J.D. Nash, T.C. Bartholomaus, D. Felikson, L.A. Stearns, and others. 2016. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophysical Research Letters 43:9,739–9,748, https://doi.org/​10.1002/2016GL070170.

Carroll, D., D.A. Sutherland, E.L. Shroyer, J.D. Nash, G.A. Catania, and L.A. Stearns. 2015. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. Journal of Physical Oceanography 45:2,169–2,185, https://doi.org/10.1175/JPO-D-15-0033.1.

Dawes, P.R., and D. van As. 2010. An advancing glacier in a recessive ice regime: Berlingske Brae, North-West Greenland. Geological Survey of Denmark and Greenland Bulletin 20:79–82.

Enderlin, E.M., I.M. Howat, S. Jeong, M.J. Noh, J.H. Angelen, and M.R. Broeke. 2014. An improved mass budget for the Greenland Ice Sheet. Geophysical Research Letters 41:866–872, https://doi.org/10.1002/2013GL059010.

Fenty, I., J.K. Willis, A. Khazendar, S. Dinardo, R. Forsberg, I. Fukumori, D. Holland, M. Jakobsson, D. Moller, J. Morison, and others. 2016. Oceans Melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography 29(4):72–83, https://doi.org/​10.5670/oceanog.2016.100.

Fried, M.J., G.A. Catania, T.C. Bartholomaus, D. Duncan, M. Davis, L.A. Stearns, J. Nash, E. Shroyer, and D. Sutherland. 2015. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophysical Research Letters 42:9,328–9,336, https://doi.org/​10.1002/2015GL065806.

Grist, J.P., S.A. Josey, L. Boehme, M.P. Meredith, K.L. Laidre, M.P. Heide-Jørgensen, K.M. Kovacs, C. Lydersen, F.J.M. Davidson, G.B. Stenson, and others. 2014. Seasonal variability of the warm Atlantic water layer in the vicinity of the Greenland shelf break. Geophysical Research Letters 41:8,530–8,537, https://doi.org/​10.1002/​2014GL062051.

Holland, D.M., R.H. Thomas, B. De Young, M.H. Ribergaard, and B. Lyberth. 2008. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience 1:659–664, https://doi.org/10.1038/ngeo316.

Jenkins, A. 2011. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. Journal of Physical Oceanography 41(12):2,279–2,294, https://doi.org/10.1175/JPO-D-11-03.1.

Johnson, H.L., A. Münchow, K.K. Falkner, and H. Melling. 2011. Ocean circulation and properties in Petermann Fjord, Greenland. Journal of Geophysical Research 116, C01003, https://doi.org/​10.1029/​2010JC006519.

Joughin, I., B. Smith, I. Howat, T. Scambos, and T. Moon. 2010. Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology 56:415–430, https://doi.org/​10.3189/002214310792447734.

Khan, S.A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick. 2010. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophysical Research Letters 37, L06501, https://doi.org/10.1029/2010GL042460.

McMillan, M., A. Leeson, A. Shepherd, K. Briggs, T.W.K. Armitage, A. Hogg, P. Kuipers Munneke, M. van den Broek, B. Noël, W.J. van de Berg, and others. 2016. A high resolution record of Greenland mass balance. Geophysical Research Letters 43:7,002–7,010, https://doi.org/​10.1002/​2016GL069666.

Meier, M.F., and A. Post. 1987. Fast tidewater glaciers. Journal of Geophysical Research 92(B9):9,051–9,058, https://doi.org/​10.1029/JB092iB09p09051.

Moller, D., S. Hensley, G.A. Sadowy, C.D. Fisher, T. Michel, M. Zawadzki, and E. Rignot. 2011. The Glacier and Land Ice Surface Topography Interferometer: An airborne proof-of-concept demonstration of high-precision Ka-band singlepass elevation mapping. IEEE Transactions on Geoscience and Remote Sensing 49(2):827–842, https://doi.org/10.1109/TGRS.2010.2057254.

Morlighem, M., C.N. Williams, E. Rignot, L. An, J.E. Arndt, J.L. Bamber, G. Catania, N. Chauché, J.A. Dowdeswell, B. Dorschel, and others. 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophysical Research Letters 44:11,051–11,061, https://doi.org/​10.1002/2017GL074954.

Nerem, R.S., B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America 115(9):2,022–2,025, https://doi.org/​10.1073/​pnas.1717312115.

Nienow, P.W., A.J. Sole, D.A. Slater, and T.R Cowton. 2017. Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system. Current Climate Change Reports 3(4):330–344, https://doi.org/10.1007/s40641-017-0083-9.

Noël, B., W.J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. van de Wal, and M.R. van den Broeke. 2015. Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. Cryosphere 9(5):1,831–1,844, https://doi.org/​10.5194/tc-9-1831-2015.

Nowicki, S., and H. Seroussi. 2018. Projections of future sea level contributions from the Greenland and Antarctic Ice Sheets: Challenges beyond dynamical ice sheet modeling, Oceanography 31(2).

Porter, D., K. Tinto, A. Boghosian, J. Cochran, R. Bell, S. Manizade, and J. Sonntag. 2014. Bathymetric control of tidewater glacier mass loss in northwest Greenland. Earth and Planetary Science Letters 401:40–46, https://doi.org/10.1016/j.epsl.​2014.05.058.

Reynolds, R.W., T.M. Smith, C. Liu, D.B. Chelton, K.S. Casey, and M.G. Schlax. 2007. Daily high-​resolution-blended analyses for sea surface temperature. Journal of Climate 20:5,473–5,496, https://doi.org/10.1175/2007JCLI1824.1.

Rignot, E., I. Fenty, D. Menemenlis, and Y. Xu. 2012. Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology 53:257–266, https://doi.org/​10.3189/​2012AoG60A136.

Rignot, E., I. Fenty, Y. Xu, C. Cai, and C. Kemp. 2015. Undercutting of marine-terminating glaciers in West Greenland. Geophysical Research Letters 42:5,909–5,917, https://doi.org/​10.1002/​2015GL064236.

Rignot, E., Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, and others. 2016. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters 43(12):6,374–6,382, https://doi.org/​10.1002/2016GL068784.

Straneo, F., R.G. Curry, D.A. Sutherland, G.S. Hamilton, C. Candese, K. Våge, and L.A. Stearns. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geoscience 4:322–327, https://doi.org/10.1038/NGEO1109.

Straneo, F., and P. Heimbach. 2013. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504(7478):36–43, https://doi.org/​10.1038/nature12854.

Straneo, F., D. Sutherland, D. Holland, C. Gladish, G. Hamilton, H. Johnson, E. Rignot, Y. Xu, and M. Koppes. 2012. Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology 53:202–210, https://doi.org/​10.3189/​2012AoG60A059.

Truffer, M., and R.J. Motyka. 2016. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings. Reviews in Geophysics 54:220–239, https://doi.org/​10.1002/​2015RG000494.

van den Broeke, M., J.L. Bamber, J. Ettema, E.J. Rignot, E. Schrama, W. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters. 2009. Partitioning recent Greenland mass loss. Science 326:984–986, https://doi.org/10.1126/science.1178176.

Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes. 2012. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Annals of Glaciology 53(60):229–234, https://doi.org/10.3189/2012AoG60A139.