Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 03

View Issue TOC
Volume 22, No. 3
Pages 96 - 109

Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Ocean data assimilation has matured to the point that observations are now routinely combined with model forecasts to produce a variety of ocean products. Approaches to ocean data assimilation vary widely both in terms of the sophistication of the method and the observations assimilated, and also in terms of specification of the forecast error covariances, model biases, observation errors, and quality-control procedures. In this paper, we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE) community. We discuss assimilation methods, observations assimilated, and techniques used to specify error covariances. In addition, we describe practical implementation aspects and present analysis performance results for some of the analysis systems. Finally, we describe plans for improving the assimilation systems in the post-GODAE time period beyond 2008.

Citation

Cummings, J., L. Bertino, P. Brasseur, I. Fukumori, M. Kamachi, M.J. Martin, K. Mogensen, P. Oke, C.E. Testut, J. Verron, and A. Weaver. 2009. Ocean data assimilation systems for GODAE. Oceanography 22(3):96–109, https://doi.org/10.5670/oceanog.2009.69.

References
    Bell, M.J., M.J. Martin, and N.K. Nichols. 2004. Assimilation of data into an ocean model with systematic errors near the equator. Quarterly Journal of the Royal Meteorological Society 130:873–893.
  1. Bloom, S.C., L.L. Takacs, A.M. Da Silva, and D. Ledvina. 1996. Data assimilation using incremental analysis updates. Monthly Weather Review 124:1,256–1,271.
  2. Brasseur, P. 2006. Ocean data assimilation using sequential methods based on the Kalman filter. From theory to practical implementations. Pp. 271–316 in Ocean Weather Forecasting: An Integrated View of Oceanography. E.P. Chassignet and J. Verron, eds, Springer.
  3. Brasseur P., P. Bahurel, L. Bertino, F. Birol, J.-M. Brankart, N. Ferry, S. Losa, E. Rémy, J. Schröter, S. Skachko, and others. 2005. Data assimilation for marine monitoring and prediction: The Mercator operational assimilation systems and the MERSEA developments. Quarterly Journal of the Royal Meteorological Society 131:3,561–3,582.
  4. Chelton, D.B., R.A. DeSzoeke, M.G. Schlax, K.E. Naggar, and N. Siwertz. 1998. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography 28:433–460.
  5. Cummings, J.A. 2005. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society 131:3,583–3,604.
  6. Daley, R., and E. Barker. 2001. NAVDAS formulation and diagnostics. Monthly Weather Review 129:869–883.
  7. Dombrowsky, E., L. Bertino, G.B. Brassington, E.P. Chassignet, F. Davidson, H.E. Hurlburt, M. Kamachi, T. Lee, M.J. Martin, S. Mei, and M. Tonani. 2009. GODAE systems in operation. Oceanography 22(3):80–95.
  8. Evensen, G. 2006. Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp.
  9. Fu, L.-L., I. Fukumori, and R.N. Miller. 1993. Fitting dynamic models to the Geosat sea level observations in the Tropical Pacific Ocean. Part II: A linear, wind-driven model. Journal of Physical Oceanography 23:2,162–2,181.
  10. Fujii, Y. 2005. Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar). Journal of Oceanography 61:167–181.
  11. Fujii, Y., and M. Kamachi. 2003. Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes. Journal of Geophysical Research 108(C9), 3297, doi:10.1029/2002JC001745.
  12. Fujii, Y., S. Ishizaki, and M. Kamachi. 2005. Application of nonlinear constraints in a three-dimensional variational ocean analysis. Journal of Oceanography 61:655–662.
  13. Fukumori, I. 2002. A partitioned Kalman filter and smoother. Monthly Weather Review 130:1,370–1,383.
  14. Fukumori, I. 2006. What is data assimilation really solving, and how is the calculation actually done? Pp. 317–342 in Ocean Weather Forecasting: An Integrated View of Oceanography. E.P. Chassignet and J. Verron, eds, Springer.
  15. Fukumori, I., and P. Malanotte-Rizzoli. 1995. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model. Journal of Geophysical Research 100:6,777–6,793.
  16. Fukumori, I., J. Benveniste, C. Wunsch, and D.B. Haidvogel. 1993. Assimilation of sea surface topography into an ocean circulation model using a steady-state smoother. Journal of Physical Oceanography 23:1,831–1,855.
  17. Hurlburt, H.E., G.B. Brassington, Y. Drillet, M. Kamachi, M. Benkiran, R. Bourdallé-Badie, E.P. Chassignet, G.A. Jacobs, O. Le Galloudec, J.-M. Lellouche, and others. 2009. High-resolution global and basin-scale ocean analyses and forecasts. Oceanography 22(3):110–127.
  18. Ingleby, B., and M. Huddleston. 2007. Quality control of ocean temperature and salinity profiles: Historical and real-time data. Journal of Marine Systems 65:158–175.
  19. Kim, S.-B., T. Lee, and I. Fukumori. 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the NINO3 region. Journal of Climate 20:3,822–3,843.
  20. Lea, D., J.-P. Drecourt, K. Haines, and M.J. Martin. 2008. Ocean altimeter assimilation with observational- and model-bias correction. Quarterly Journal of the Royal Meteorological Society 134:1,761–1,774.
  21. Martin, M.J., A. Hines, and M.J. Bell. 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quarterly Journal of the Royal Meteorological Society 133:981–995.
  22. Oke, P.R., G.B. Brassington, D.A. Griffin, and A. Schiller. 2008. The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modelling 21:46–70.
  23. Stark, J.D., C.J. Donlon, M.J. Martin, and M.E. McCulloch. 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. Paper presented at Oceans ‘07 IEEE Conference, “Marine Challenges: Coastline to Deep Sea,” June 18–21, 2007, Aberdeen, Scotland.
  24. Testut C.-E., P. Brasseur, J.M. Brankart, and J. Verron. 2003. Assimilation of sea-surface temperature and altimetric observations during 1992–1993 into an eddy-permitting primitive equation model of the North Atlantic Ocean. Journal of Marine Systems 40–41:291–316.
  25. Tshimanga, J., S. Gratton, A.T. Weaver, and A. Sartenaer. 2008. Limited-memory preconditioners, with application to incremental four-dimensional variational data assimilation. Quarterly Journal of the Royal Meteorological Society 134:753–771.
  26. Usui, N., H. Tsujino, H. Nakano, and Y. Fujii. 2008. Formation process of the Kuroshio large meander in 2004. Journal of Geophysical Research 113, C08047, doi:10.1029/2007JC004675.
  27. Wang, O., I. Fukumori, T. Lee, and B. Cheng. 2004. On the cause of eastern equatorial Pacific Ocean T-S variations associated with El Niño. Geophysical Research Letters 31, L15309, doi:10.1029/2004GL020188.
  28. Weaver, A.T., C. Deltel, E. Machu, S. Ricci, and N. Daget. 2005. A multivariate balance operator for variational ocean data assimilation. Quarterly Journal of the Royal Meteorological Society 131:3,605–3,625.
  29. Wunsch, C. 2006. Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, New York, NY, 384 pp.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.