Oceanography The Official Magazine of
The Oceanography Society
Volume 28 Issue 02

View Issue TOC
Volume 28, No. 2
Pages 122 - 135

OpenAccess

Ocean Acidification in the Surface Waters of the Pacific-Arctic Boundary Regions

By Jeremy T. Mathis , Jessica N. Cross , Wiley Evans , and Scott C. Doney 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (Ωarag). Enhanced sea ice melt, respiration of organic matter, upwelling, and riverine inputs have been shown to exacerbate CO2 -driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2 . Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water Ωarag in the Bering, Chukchi, and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced Ωarag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in Ωarag may indicate higher resilience of the Bering Sea ecosystem to these low-Ωarag conditions than the ecosystems of the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for Ωarag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for Ωarag for the Bering Sea does not pass out of the natural variability range until 2044. As Ωarag in these shelf seas slips below the present-day range of large seasonal variability by mid-century, the diverse ecosystems that support some of the largest commercial and subsistence fisheries in the world may be under tremendous pressure.

Citation

Mathis, J.T., J.N. Cross, W. Evans, and S.C. Doney. 2015. Ocean acidification in the surface waters of the Pacific-Arctic boundary regions. Oceanography 28(2):122–135, https://doi.org/10.5670/oceanog.2015.36.

References
    Anderson, L.G., and S. Kaltin. 2001. Carbon fluxes in the Arctic Ocean: Potential impact by climate change. Polar Research 20:225–232, https://doi.org/10.1111/j.1751-8369.2001.tb00060.x.
  1. Arrigo, K.R., and G.L. van Dijken. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research 116, C09011, https://doi.org/10.1029/2011JC007151.
  2. Arrigo, K.R., G. van Dijken, and S. Pabi. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35, L19603, https://doi.org/10.1029/2008GL035028.
  3. Barry, J.P., S. Widdicombe, and J.M. Hall-Spenser. 2011. Effects of ocean acidification on marine biodiversity and ecosystem function in ocean acidification. Pp. 192–209 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, Oxford.
  4. Barton, A., B. Hales, G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography 57:698–710, https://doi.org/10.4319/lo.2012.57.3.0698.
  5. Bates, N.R., W.-J. Cai, and J.T. Mathis. 2011. The ocean carbon cycle in the western Arctic Ocean: Distributions and air-sea fluxes of carbon dioxide. Oceanography 24(3):186–201, https://doi.org/10.5670/oceanog.2011.71.
  6. Bates, N.R., R. Garley, K.E. Frey, K.L. Shake, and J.T. Mathis. 2014. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: Meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice. Biogeosciences Discussions 11:1,097–1,145, https://doi.org/10.5194/bgd-11-1097-2014.
  7. Bates, N.R., and J.T. Mathis. 2009. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:2,433–2,459, http://www.biogeosciences.net/6/2433/2009/bg-6-2433-2009.pdf
  8. Bednaršek, N., R.A. Feely, J.C.P. Reum, W. Peterson, J. Menkel, S.R. Alin, and B. Hales 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability due to ocean acidification in the California Current Ecosystem. Proceedings of the Royal Society B 281, 20140123, https://doi.org/10.1098/rspb.2014.0123.
  9. Bednaršek, N., G.A. Tarling, D.C.E. Bakker, S. Fielding, E.M. Jones, H.J. Venables, P. Ward, A. Kuzirian, B. Lézé, R.A. Feely, and E.J. Murphy 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience 5:881–885, https://doi.org/10.1038/ngeo1635.
  10. Bell, G., and A. Gonzalez. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecology Letters 12:942–948, https://doi.org/10.1111/j.1461-0248.2009.01350.x.
  11. Bernhardt, J.R., and H.M. Leslie. 2013. Resilience to climate change in coastal marine ecosystems. Annual Review of Marine Science 5:371–392, https://doi.org/10.1146/annurev-marine-121211-172411.
  12. Byrne, R.H., S. Mecking, R.A. Feely, and X. Liu. 2010. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophysical Research Letters 37, L02601, https://doi.org/10.1029/2009GL040999.
  13. Cai, W.-J., L. Chen, B. Chen, Z. Gao, S.H. Lee, J. Chen, D. Pierrot, K. Sullivan, Y. Wang, X. Hu, and others. 2010. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:556–559, https://doi.org/10.1126/science.1189338.
  14. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365, https://doi.org/10.1038/425365a.
  15. Carmack, E., and P. Wassmann. 2006. Food webs and physical-biological coupling on pan-Arctic shelves: Unifying concepts and comprehensive perspectives. Progress in Oceanography 71:446–477, https://doi.org/10.1016/j.pocean.2006.10.004.
  16. Comiso, J.C., C.L. Parkinson, R. Gersten, and L. Stock. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 3, L01703, https://doi.org/10.1029/2007GL031972.
  17. Cooley, S.R., and S.C. Doney. 2009. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters 4:024007, https://doi.org/10.1088/1748-9326/4/2/024007.
  18. Cooley, S.R., N. Lucey, H. Kite-Powell, and S.C. Doney. 2012. Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish and Fisheries 13:182–215, https://doi.org/10.1111/j.1467-2979.2011.00424.x.
  19. Cross, J.N., J.T. Mathis, and N.R. Bates. 2012. Hydrographic controls on net community production and total organic carbon distributions in the eastern Bering Sea. Deep Sea Research Part II 65–70:98–109, https://doi.org/10.1016/j.dsr2.2012.02.003.
  20. Cross, J.N., J.T. Mathis, N.R. Bates, and R.H. Byrne. 2013. Conservative and non-conservative variations of total alkalinity on the southeastern Bering Sea shelf. Marine Chemistry 154:100–112, https://doi.org/10.1016/j.marchem.2013.05.012.
  21. Cross, J.N., J.T. Mathis, M.W. Lomas, S.B. Moran, M.S. Baumann, D. Shull, C.W. Mordy, M.L. Ostendorf, N.R. Bates, P.J. Stabeno, and J.M. Grebmeier. 2014. Integrated assessment of the carbon budget in the southeastern Bering Sea. Deep Sea Research Part II 109:112–124, https://doi.org/10.1016/j.dsr2.2014.03.003.
  22. Dickson, A.G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A 37:755–766, https://doi.org/10.1016/0198-0149(90)90004-F.
  23. Dickson, A.G., and C. Goyet, eds. 1994. Handbook of Methods for the Analysis of Various Parameters of the Carbon Dioxide System in Seawater, Version 2.0. Rep. ORNL/CDIAC-74, US Department of Energy, Washington, DC.
  24. Dickson, A.G., and F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A 34:1,733–1,743, https://doi.org/10.1016/0198-0149(87)90021-5.
  25. Evans, W., and J.T. Mathis. 2013. The Gulf of Alaska coastal ocean as an atmospheric CO2 sink. Continental Shelf Research 65:52–63, https://doi.org/10.1016/j.csr.2013.06.013.
  26. Evans, W., J.T. Mathis, and J.N. Cross. 2014. Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences 11:365–379, https://doi.org/10.5194/bg-11-365-2014.
  27. Fabry, V.J., J.B. McClintock, J.T. Mathis, and J.M. Grebmeier. 2009. Ocean acidification at high latitudes: The bellwether. Oceanography 22(4):160–171, https://doi.org/10.5670/oceanog.2009.105.
  28. Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47, https://doi.org/10.5670/oceanog.2009.95.
  29. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366, https://doi.org/10.1126/science.1097329.
  30. Frisch, L.C., J.T. Mathis, N.P. Kettle, and S.F. Trainor. 2015. Gauging perceptions of ocean acidification in Alaska. Marine Policy 53:101–110, https://doi.org/10.1016/j.marpol.2014.11.022.
  31. Garneau, M.E., W.F. Vincent, R. Terrado, and C. Lovejoy. 2009. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. Journal of Marine Systems 75:185–197, https://doi.org/10.1016/j.jmarsys.2008.09.002.
  32. Hoffman, R.R., and C.M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature 470:479–485, https://doi.org/10.1038/nature09670.
  33. Hönisch, B., A. Ridgwell, D.N. Schmidt, E. Thomas, S.J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R.C. Martindale, S.E. Greene, and others. 2012. The geological record of ocean acidification. Science 335:1,058–1,063, https://doi.org/10.1126/science.1208277.
  34. Hunt, G.L. Jr., K.O. Coyle, L.B. Eisner, E.V. Farley, R.A. Heintz, F. Mueter, J.M. Napp, J.E. Overland, P.H. Ressler, S. Salo, and P.J. Stabeno. 2011. Climate impacts on eastern Bering Sea foodwebs: A synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science 68:1,230–1,243, https://doi.org/10.1093/icesjms/fsr036.
  35. Kadko, D., R.S. Pickart, and J.T. Mathis. 2008. Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. Journal of Geophysical Research 113, C02018, https://doi.org/10.1029/2007JC004429.
  36. Keppel-Aleks, G., J.T. Randerson, K. Lindsay, B.B. Stephens, J.K. Moore, S.C. Doney, P.E. Thornton, N.M. Mahowald, F.M. Hoffman, C. Sweeney, and others. 2013. Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first centuries. Journal of Climate 26:4,447–4,475, https://doi.org/10.1175/JCLI-D-12-00589.1.
  37. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, and T.-H. Peng. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18, GB4031, https://doi.org/10.1029/2004GB002247.
  38. Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13:1,419–1,434, https://doi.org/10.1111/j.1461-0248.2010.01518.x.
  39. Lavoie, D., K.L. Denman, and R.W. Macdonald. 2010. Effects of future climate change on primary productivity and export fluxes in the Beaufort Sea. Journal of Geophysical Research 115, C04018, https://doi.org/10.1029/2009JC005493.
  40. Lee, H., S.C. Swenson, A.G. Slater, and D.M. Lawrence. 2014. Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters 9:124006, https://doi.org/10.1088/1748-9326/9/12/124006.
  41. Lewis, E.R., and D.W.R. Wallace. 1995. Basic Programs for the CO2 System in Seawater. Rep. BNL-61827, Brookhaven National Laboratory, Upton, NY.
  42. Lindsay, K., G.B. Bonan, S.C Doney, F.M. Hoffmann, D.M. Lawrence, M.C. Long, N.M. Mahowald, J.K. Moore, J.T. Randerson, and P.E. Thornton. 2014. Preindustrial-control and twentieth-century carbon cycle experiments with the earth system model CESM1(BGC). Journal of Climate 27:8,981–9,005, https://doi.org/10.1175/JCLI-D-12-00565.1.
  43. Long, M.C., K. Lindsay, and S. Peacock. 2013. Twentieth-century oceanic carbon uptake and storage in CESMI(BGC). Journal of Climate 26(18):6,775–6,800, https://doi.org/10.1175/JCLI-D-12-00184.1.
  44. Long, W.C., K.M. Swiney, and R.J. Foy. 2013a. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Marine Pollution Bulletin 69:38–47, https://doi.org/10.1016/j.marpolbul.2013.01.011.
  45. Long, W.C., K.M. Swiney, C. Harris, H.N. Page, and R.J. Foy. 2013b. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and Tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS ONE 8(4):e60959, https://doi.org/10.1371/journal.pone.0060959.
  46. Macdonald, R.W., L.G. Anderson, J.P. Christensen, L.A. Miller, I.P. Semiletov, and R. Stein. 2010. Polar margins: The Arctic Ocean. Pp. 291–303 in Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. K.K. Liu, L. Atkinson, R. Quiñones, and L. Talaue-McManus, eds, Springer, NY.
  47. Mathis, J.T., N.R. Bates, D.A. Hansell, and T. Babila. 2009. Net community production in the northeastern Chukchi Sea. Deep Sea Research Part II 56:1,213–1,222, https://doi.org/10.1016/j.dsr2.2008.10.017.
  48. Mathis, J.T., R.H. Byrne, C.L. McNeil, R.P. Pickart, L. Juranek, S. Liu, J. Ma, R.A. Easley, M.W. Elliot, J.N. Cross, and others. 2012. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophysical Research Letters 39, L07606, https://doi.org/10.1029/2012GL051574.
  49. Mathis, J.T., S.R. Cooley, N. Lucey, S. Colt, J. Ekstrom, T. Hurst, C. Hauri, W. Evans, J.N. Cross, and R.A. Feely. In press. Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography, https://doi.org/10.1016/j.pocean.2014.07.001.
  50. Mathis, J.T., J.N. Cross, and N.R. Bates. 2011a. The role of ocean acidification in systemic carbonate mineral suppression in the Bering Sea. Geophysical Research Letters 38, L19602, https://doi.org/10.1029/2011GL048884.
  51. Mathis, J.T., J.N. Cross, and N.R. Bates. 2011b. Coupling primary production and terrestrial runoff to ocean acidification and carbonate mineral suppression in the eastern Bering Sea. Journal of Geophysical Research 116, C02030, https://doi.org/10.1029/2010JC006453.
  52. Mathis, J.T., R.S. Pickart, D.A. Hansell, D. Kadko, and N.R. Bates. 2007. Eddy transport of organic carbon and nutrients from the Chukchi Shelf: Impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research 112, C05011, https://doi.org/10.1029/2006JC003899.
  53. Mathis, J.T., and J.M. Questel. 2013. Assessing seasonal changes in carbonate parameters across small spatial gradients in the Northeastern Chukchi Sea. Continental Shelf Research 67:42–51, https://doi.org/10.1016/j.csr.2013.04.041.
  54. Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowitz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18:897–907, https://doi.org/10.4319/lo.1973.18.6.0897.
  55. Orr, J.C. 2011. Recent and future changes in ocean carbonate chemistry. Pp. 41–66 in Ocean Acidification. J.-P. Gattuso and L. Hansson, eds, Oxford University Press, Oxford, UK.
  56. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686, https://doi.org/10.1038/nature04095.
  57. Peterson, B.J., R.M. Holmes, J.W. McClelland, C.J. Vörösmarty, R.B. Lammers, A.I. Shiklomanov, I.A. Shiklomanov, and S. Rahmstorf. 2002. Increasing river discharge to the Arctic Ocean. Science 298:2,171–2,173, https://doi.org/10.1126/science.1077445.
  58. Reisdorph, S.C., and J.T. Mathis. 2014. The dynamic controls on carbonate mineral saturation states and ocean acidification in a glacially dominated estuary. Estuarine, Coastal and Shelf Science 144:8–18, https://doi.org/10.1016/j.ecss.2014.03.018.
  59. Roy, T., L. Bopp, M. Gehlen, B. Schneider, P. Cadule, T.L. Frölicher, J. Segschneider, J. Tjiputra, C. Heinze, and F. Joos. 2011. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multimodel linear feedback analysis. Journal of Climate 24:2,300–2,318, https://doi.org/10.1175/2010JCLI3787.1.
  60. Sabine, C.L., and R.A. Feely. 2007. The oceanic sink for carbon dioxide. Pp. 31–49 in Greenhouse Gas Sinks. D. Reay, N. Hewitt, J. Grace, and K. Smith, eds, CABI Publishing, Oxfordshire, UK.
  61. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371, https://doi.org/10.1126/science.1097403.
  62. Stabeno, P.J., E.V. Farley Jr., N.B. Kachel, S. Moore, C.W. Mordy, J.M. Napp, J.E. Overland, A.I. Pinchuk, and M.F. Sigler. 2012a. A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. Deep Sea Research Part II 65–70:14–30, https://doi.org/10.1016/j.dsr2.2012.02.019.
  63. Stabeno, P.J., N.B. Kachel, S.E. Moore, J.M. Napp, M. Sigler, A. Yamaguchi, and A.N. Zerbini. 2012b. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II 65–70:31–45, https://doi.org/10.1016/j.dsr2.2012.02.020.
  64. Steinacher, M., F. Joos, T.L. Frölicher, G.-K. Platter, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533, https://doi.org/10.5194/bg-6-515-2009.
  65. Striegl, R.G., M.M. Dornblaser, G.R. Aiken, K.P. Wickland, and P.A. Raymond. 2007. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resources Research 43, WO2411, https://doi.org/10.1029/2006WR005201.
  66. Stroeve, J., M.M. Holland, W. Meier, T. Scambos, and M. Serreze. 2007. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters 34, L09501, https://doi.org/10.1029/2007GL029703.
  67. van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, and others. 2011. The representative concentration pathways: An overview. Climatic Change 109:5–31, https://doi.org/10.1007/s10584-011-0148-z.
  68. Waldbusser, G.G., B. Hales, C.J. Langdon, B.A. Haley, P. Schrader, E.L. Brunner, M.W. Gray, C.A. Miller, and I. Gimenez. 2014. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5:273–280, https://doi.org/10.1038/nclimate2479.
  69. Walvoord, M.A., and R.G. Striegl. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters 34, L12402, https://doi.org/10.1029/2007GL030216.
  70. Weiss, R.F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2:203–215, https://doi.org/10.1016/0304-4203(74)90015-2.
  71. Willi, Y., J. Van Buskirk, and A.A. Hoffman. 2006. Limits to the adaptive potential of small populations. Annual Reviews of Ecology, Evolution and Systematics 37:433–458, https://doi.org/10.1146/annurev.ecolsys.37.091305.110145.
  72. Yamamoto-Kawai, M., F. McLaughlin, and E. Carmack. 2013. Ocean acidification in the three oceans surrounding northern North America. Journal of Geophysical Research 118:6,274–6,284, https://doi.org/10.1002/2013JC009157.
  73. Yamamoto-Kawai, M., F.A. McLaughlin, E.C. Carmack, S. Nishino, and K. Shimada. 2009a. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 326:1,098–1,100, https://doi.org/10.1126/science.1174190.
  74. Yamamoto-Kawai, M., F.A. McLaughlin, E.C. Carmack, S. Nishino, K. Shimada, and N. Kurita. 2009b. Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. Journal of Geophysical Research 114, C00A05, https://doi.org/10.1029/2008JC005000.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.