Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 60 - 71

OpenAccess

Ocean Acidification in the California Current System

By Claudine Hauri , Nicolas Gruber, Gian-Kasper Plattner, Simone Alin, Richard A. Feely, Burke Hales, and Patricia A. Wheeler  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Eastern boundary upwelling systems (EBUS) are naturally more acidic than most of the rest of the surface ocean. Observations of EBUS already show pH values and saturation states with regard to the carbonate mineral aragonite that are as low as those expected for most open ocean waters several decades from now. Thus, as atmospheric CO2 increases further, EBUS are prone to widespread and persistent undersaturation with regard to aragonite, making them especially sensitive to ocean acidification. Here, we describe ocean carbonate chemistry and its short-term-to-seasonal variability in one major EBUS, the California Current System (CCS), based on observations and results from an eddy-resolving regional model. Results reveal high variability in ocean carbonate chemistry, largely driven by seasonal upwelling of waters with low pH and saturation states, and subsequent interactions of transport and biological production. Model simulations confirm that the pH of CCS waters has decreased by about 0.1 pH unit and by 0.5 in saturation state since pre-industrial times. A first assessment of the vulnerability of CCS marine organisms and ecosystems to ocean acidification suggests that there will be winners and losers, likely provoking changes in species composition. Benthic organisms appear to be among those that will be most affected by the continuing acidification of the CCS. More accurate projections require special consideration of the integrated effects of ocean acidification, ocean warming, decreasing oxygen levels, and other processes that are expected with global change.

Citation

Hauri, C., N. Gruber, G.-K. Plattner, S. Alin, R.A. Feely, B. Hales, and P.A. Wheeler. 2009. Ocean acidification in the California Current System. Oceanography 22(4):60–71, https://doi.org/10.5670/oceanog.2009.97.

References
    Balch, W.M., and P.E. Utgoff. 2009. Potential interactions among ocean acidification, coccolithophores, and the optical properties of seawater. Oceanography 22(4):146–159.
  1. Bijma, J., H.J. Spero, and D.W. Lea. 1999. Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate systems (experimental results). Pp. 489–512 in Use of Proxies in Paleoceanography: Examples from the South Atlantic. G. Fisher and G. Wefer, eds., Springer-Verlag, New York, NY.
  2. Bijma, J., B. Honisch, and R.E. Zeebe. 2002. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial-age deepwaters of the Caribbean Sea” by W.S. Broecker and E. Clark. Geochemistry, Geophysics, Geosystems 3(1064), doi:10.1029/2002GC000388.
  3. Bograd, S.J., C.G. Castro, E. Di Lorenzo, D.M. Palacios, H. Bailey, W. Gilly, and F.P. Chavez. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophysical Research Letters 35, doi:10.1029/2008GL034185.
  4. Brewer, P.G., and E.T. Peltzer. 2009. Oceans: Limits to marine life. Science 324:347–348.
  5. Burnett, L., N. Terwilliger, A. Carroll, D. Jorgensen, and D. Scholnick. 2002. Respiratory and acid-base physiology of the purple sea urchin, Stronglyocentratus purpuratus, during air exposure: Presence and function of a facultative lung. Biological Bulletin 203:42–50.
  6. Caldeira, K., and M.E. Wickett. 2003. Oceanography: Anthropogenic carbon and pH. Nature 425:365, doi:10.1038/425365a.
  7. Caldeira, K., and M.E. Wickett. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to atmosphere and ocean. Journal of Geophysical Research 110, C09S04, doi:10.1029/2004JC002671.
  8. Chavez, F.P., and J.R. Toggweiler. 1995. Physical estimates of global new production: The upwelling contribution. Pp. 313–320 in Upwelling in the Ocean: Modern Processes and Ancient Records. C.P. Summerhayes, K.C. Emeis, M.V. Angel, R.L. Smith, and B. Zeitzschel, eds., J. Wiley & Sons, Chichester, UK.
  9. Cooley, S.R, and S.C. Doney. 2009. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters 4, doi:10.1088/1748-9326/4/2/024007.
  10. Deutsch, C.A., J.J. Tewksbury, R.B. Huey, K.S. Sheldon, C.K. Ghalambor, D.C. Haak, and P.R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105(18):6,668–6,672, doi:10.1073pnas.0709472105.
  11. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192.
  12. Dupont, S., and M.C. Thorndyke. 2009. Impact of CO2-driven ocean acidification on invertebrates’ early life-history: What we know, what we need to know and what we can do. Biogeosciences Discussions 6:3,109–3,131.
  13. Dupont, S., and M.C. Thorndyke. 2008. Ocean acidification and its impact on the early life-history stages of marine animals. Pp. 89–97 in Impacts of Acidification on Biological, Chemical and Physical Systems in the Mediterranean and Black Seas. CIESM Workshop Monographs, n°36. F. Briand, ed., Monaco, 124 pp.
  14. Elston, R.A., H. Hasegawa, K.L. Humphrey, I.K. Polyak, C.C. Häse. 2008. Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: Severity, environmental drivers, geographic extent and management. Diseases of Aquatic Organisms 82:119–134, doi:10.3354/dao01982.
  15. Engel, A., I. Zondervan, K. Aerts, L. Beaufort, A. Benthien, L. Chou, B. Delille, J.-P. Gattuso, J. Harlay, and C. Heemann. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography 50(2)493–507.
  16. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65:414–432.
  17. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366.
  18. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882):1,490–1,492, doi:10.1126/science.1155676.
  19. Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603, doi:10.1029/2006GL028554.
  20. Gruber, N., H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J. Oram, G.-K. Plattner, and K.D. Stolzenbach. 2006. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. Deep-Sea Research Part I 53:1,483–1,516, doi:10.1016/j.dsr.2006.06.005.
  21. Guinotte, J.M., and V.J. Fabry. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134:320–342, doi:10.1196/annals.1439.013.
  22. Hales, B., T. Takahashi, and L. Bandstra. 2005. Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles 19, GB1009, doi:10.1029/2004GB002295.
  23. Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, and M.C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99, doi:10.1038/nature07051.
  24. Hare, C.E., K. Leblanc, G.R. Ditullio, R.M. Kudela, Y. Zhang, P.A. Lee, S. Riseman, and D.A. Hutchins. 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Marine Ecology Progress Series 352:9–16, doi:10.3354/meps07182.
  25. Hoegh-Guldberg, O., P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, and others. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1,737–1,742, doi:10.1126/science.1152509.
  26. Hofmann, M., and H.J. Schellnhuber. 2009. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proceedings of the National Academy of Sciences of the United States of America 106(9):3,017–3,022: doi:10.1073/pnas.0813384106.
  27. Iglesias-Rodriguez, M.D., P.R. Halloran, R.E.M. Rickaby, I.R. Hall, E. Colmenero-Hidalgo, J.R. Gittins, D.R.H. Green, T. Tyrrell, S.J. Gibbs, P. von Dassow, and others. 2008. Phytoplankton calcification in a high-CO2 world. Science 320(5874):336–340, doi:10.1126/science.1154122.
  28. Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L Robbins. 2006. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. Report of a workshop held 18-20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey, 88 pp.
  29. Kurihara, H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373:275–284.
  30. Lee, S.W., S.M. Hong, and C.S. Choi. 2006. Characteristics of calcification processes in embryos and larvae of the pacific oyster, Crassostrea gigas. Bulletin of Marine Science 78(2):309–317.
  31. Lebrato, M., D. Iglesias-Rodríguez, R.A. Feely, D. Greeley, D.O.B. Jones, N. Suarez-Bosche, R.S. Lampitt, J.E. Cartes, D.R.H. Green, and B. Alker. In press. Global contribution of echinoderms to the marine carbon cycle. Ecological Monographs.
  32. Leinweber, A., N. Gruber, H. Frenzel, G.E. Friederich, and F.P. Chavez. 2009. Diurnal carbon cycling in the surface ocean and lower atmosphere of Santa Monica Bay, California. Geophysical Research Letters 36, L08601, doi:10.1029/2008GL037018.
  33. Martin, S., and J.-P. Gattuso. 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15:2,089–2,100, doi:10.1111/j.1365-2486.2009.01874.x.
  34. McNeil, B.I., and R.J. Matear. 2008. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 105(48), doi:10.1073/pnas.0806318105.
  35. Moy, A.D., W.R. Howard, S.G. Bray, and T.W. Trull. 2009. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2:276–280, doi:10.1038/NGEO460.
  36. Ohmann, M.D., and B.E. Lavaniegos. 2008. Multi-decadal variations in calcareous holozooplankton in the California Current System: Thecosome pteropods and foraminifera from CalCOFI. Paper OS31A-1238 presented at the American Geophysical Union Fall Meeting, San Francisco, 2008.
  37. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059), doi10.1038/nature04095.
  38. Oschlies, A., K.G. Schulz, U. Riebesell, and A. Schmittner. 2008. Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochemical Cycles 22, GB4008, doi:10.1029/2007GB003147.
  39. Pane, E.F., and J.P. Barry. 2007. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Marine Ecology Progress Series 334:1–9.
  40. Plattner, G.-K., F. Joos, and T.F. Stocker. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles 16(4), doi:10.1029/2001gb001746.
  41. Spero, H.J., J. Bijma, D.W. Lea, and B.E. Bemis. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390(6659):497–500.
  42. Steinacher, M., F. Joos, T.L. Frolicher, G.K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6(4):515–533.
  43. Swanson, A.K., and C.H. Fox. 2007. Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Global Change Biology 13(8):1,696–1,709, doi:10.1111/j.1365-2486.2007.01384.x.
  44. Tans, P. 2009. An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography 22(4):26–35.
  45. Tortell, P.D., J.R. Reinfelder, and F.M.M. Morel. 1997. Active uptake of bicarbonate by diatoms. Nature 390(6657):243–244.
  46. Tortell, P.D., C.D. Payne, Y.Y. Li, S. Trimborn, B. Rost, W.O. Smith, C. Riesselman, R.B. Dunbar, P. Sedwick, and G.R. DiTullio. 2008. CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters 35(4), L04605, doi:10.1029/2007gl032583.
  47. Tunnicliffe, V., K.T.A. Davies, D.A. Butterfield, R.W. Embley, J.M. Rose, and W.W. Chadwick Jr. 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience, doi:10.1038/NGEO500.
  48. Warren, B. 2009. The big seven: Acidification risks and opportunities for the seafood industry. Current: The Journal of Marine Education 25(1):22–26.
  49. Watanabe, Y., A. Yamaguchi, H. Ishida, T. Harimoto, S. Suzuki, Y. Sekido, T. Ikeda, Y. Shirayama, M.M. Takahashi, T. Ohsumi, and J. Ishizaka. 2006. Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. Journal of Oceanography 62:185–196.
  50. Wootton J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105(48): 18,848–18,853, doi:10.1073pnas.0810079105.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.