Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 94 - 107

OpenAccess

Ocean Acidification in Deep Time

By Lee R. Kump , Timothy J. Bralower , and Andy Ridgwell  
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Is there precedence in Earth history for the rapid release of carbon dioxide (CO2) by fossil fuel burning and its environmental consequences? Proxy evidence indicates that atmospheric CO2 concentrations were higher during long warm intervals in the geologic past, and that these conditions did not prevent the precipitation and accumulation of calcium carbonate (CaCO3) as limestone; accumulation of alkalinity brought to the ocean by rivers kept surface waters supersaturated. But these were steady states, not perturbations. More rapid additions of carbon dioxide during extreme events in Earth history, including the end-Permian mass extinction (251 million years ago) and the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago) may have driven surface waters to undersaturation, although the evidence supporting this assertion is weak. Nevertheless, observations and modeling clearly show that during the PETM the deep ocean, at least, became highly corrosive to CaCO3. These same models applied to modern fossil fuel release project a substantial decline in surface water saturation state in the next century. So, there may be no precedent in Earth history for the type of disruption we might expect from the phenomenally rapid rate of carbon addition associated with fossil fuel burning.

Citation

Kump, L.R., T.J. Bralower, and A. Ridgwell. 2009. Ocean acidification in deep time. Oceanography 22(4):94–107, https://doi.org/10.5670/oceanog.2009.100.

References
    Agnini, C., E. Fornaciari, D. Rio, F. Tateo, J. Backman, and L. Giusberti. 2007. Responses of calcareous nanofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Marine Micropaleontology 63:19–38.
  1. Angori, E., G. Bernaola, and S. Monechi. 2007. Calcareous nanofossil assemblages and their response to the Paleocene-Eocene thermal maximum event at different latitudes: ODP Site 690 and Tethyan sections. GSA Special Paper 424:69–85. 
  2. Archer, D. 1996. A data-driven model of the calcite lysocline. Global Biogeochemical Cycles 10:511–526. 
  3. Archer, D., M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, and K. Tokos. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences 37:117–134.
  4. Arvidson, R.S., F.T. Mackenzie, and M. Guidry. 2006. MAGig: A Phanerozoic model for the geochemical cycling of major rock-forming components. American Journal of Science 306:135–190.
  5. Berner, R.A. 1994. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294:56–91. 
  6. Berner, R.A., and K. Caldeira. 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:955–956.
  7. Bown, P., and P. Pearson. 2009. Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzania. Marine Micropaleontology 71:60–70.
  8. Bralower, T.J. 2002. Evidence for surface water oligotrophy during the late Paleocene thermal maximum: Nanofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography 17, https://doi.org/10.1029/2001PA000662. 
  9. Bralower, T.J., M.A. Arthur, R.M. Leckie, W.V. Sliter, D.J. Allard, and S.O. Schlanger. 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the Late Barremian to Early Aptian. Palaios 9:335–369. 
  10. Broecker, W.S., and T.H. Peng. 1982. Tracers in the Sea. Eldigio Press, Palisades, New York, 690 pp.
  11. Caldeira, K., and J.F. Kasting. 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359:226–228.
  12. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365.
  13. Crowley, T.J., and K.C. Burke, eds. 1998. Tectonic Boundary Conditions for Climate Reconstructions. Oxford University Press, 304 pp.
  14. Delaney, M.L., and E.A. Boyle. 1988. Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models. Paleoceanography 3:137–156. 
  15. Dickens, G.R., J.R. O’Neil, D.K. Rea, and R.M. Owen. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971.
  16. Doney, S.C., V.J. Fabry, R.A. Feely, and J. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–192.
  17. Erba, E. 1994. Nanofossils and superplumes: The early Aptian “nanoconid crisis.” Paleoceanography 9:483–501. 
  18. Erba, E. 2004. Calcareous nanofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology 52:85–106.
  19. Erba, E., and F. Tremolada. 2004. Nanofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography 19, doi:10.1029/2003PA000884.
  20. Erwin, D.H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, NJ, 296 pp.
  21. Farley, K.A., and S.F. Eltgroth. 2003. An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He. Earth and Planetary Science Letters 208:135–148.
  22. Feeley, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.
  23. Gibbs, S.J., T.J. Bralower, P.R. Bown, J.C. Zachos, and L.M. Bybell. 2006a. Shelf-open ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients. Geology 34:233–236. 
  24. Gibbs, S.J., P.R. Bown, J.A. Sessa, T.J. Bralower, and P.A. Wilson. 2006b. Nanoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314:1,770–1,773. 
  25. Goodwin, P., R.G. Williams, A. Ridgwell, and M.J. Follows. 2009. Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nature Geoscience 2:145–150. 
  26. Grotzinger, J.P., and J.F. Kasting. 1993. New constraints on Precambrian ocean composition. Journal of Geology 101:235–243.
  27. Grotzinger, J.P., and A.H. Knoll. 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios 10:578–596.
  28. Haq, B., and A. Boersma. 1978. Introduction to Marine Micropaleontology. Elsevier, Holland, 376 pp.
  29. Hoffman, P.F., J.A. Kaufman, and G.P. Halverson. 1998. Comings and goings of global glaciations on a Neoproterozoic carbonate platform in Namibia. GSA Today 8:1–9.
  30. Hoffman, P.F., and D.P. Schrag. 2000. Snowball Earth. Scientific American 282:68–75. 
  31. Hönisch, B., N.G. Hemming, D. Archer, M. Siddall, and J.F. McManus. 2009. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1,551–1,554.
  32. Hyde, W.T., T.J. Crowley, S.K. Baum, and W.R. Peltier. 2000. Neoproterozoic “snowball Earth” simulations with a coupled climate/ice-sheet model. Nature 405:425–429.
  33. Iglesias-Rodriguez, M.D., P.R. Halloran, R.E.M. Rickaby, I.R. Hall, E. Colmenero-Hidalgo, J.R. Gittins, D.R.H. Green, T. Tyrrell, S.J. Gibbs, P. von Dassow, and others. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336–340. 
  34. Jiang, S., and S.W. Wise. 2007. A new Coccolithus species that thrived during the Paleocene/Eocene Thermal Maximum. Journal of Nanoplankton Research 29:88–91. 
  35. Kahn, A., and M.-P. Aubry. 2004. Provincialism associated with the Paleocene/Eocene thermal maximum: Temporal constraint. Marine Micropaleontology 52:117–131. 
  36. Kasemann, S.A., C.J. Hawkesworth, A.R. Prave, A.E. Fallick, and P.N. Pearson. 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change. Earth and Planetary Science Letters 231:73–86.
  37. Kasting, J.F., B. Owen, and J.B. Pollack. 1988. How climate evolved on the terrestrial planets. Scientific American 256:90–97.
  38. Kelly, D.C., T.J. Bralower, J.C. Zachos, I. Premoli Silva, and E. Thomas. 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423–426. 
  39. Kelly, D.C., T.J. Bralower, and J.C. Zachos. 1998. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 141:139–161. 
  40. Kelly, D.C., J.C Zachos, T.J. Bralower, and S.A. Schellenberg. 2005. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene-Eocene thermal maximum. Paleoceanography 20, https://doi.org/10.1029/2005PA001163. 
  41. Kennedy, M.J., N. Christie-Blick, and L.E. Sohl. 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 29:443–446.
  42. Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins. 2006. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide to future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey, 88 pp. Available online at: http://www.legislative.noaa.gov/Testimony/feely051007.pdf (accessed November 3, 2009).
  43. Knoll, A.H., R.K. Bambach, D.E. Canfield, and J.P. Grotzinger. 1996. Comparative earth history and late Permian mass extinction. Science 273:452–457.
  44. Knox, R.W.O.B., M.P. Aubry, W.A. Berggren, C. Dupuis, K. Ouda, R. Magioncalda, and M. Soliman. 2003. The Qreiya section at Gebel Abu Had: Lithostratigraphy, clay mineralogy, geochemistry and biostratigraphy. Micropaleontology 49(Suppl. 1):93–104. 
  45. Larson, R.L. 1991. Latest pulse of the earth: Evidence for a mid-Cretaceous superplume. Geology 19:547–550.
  46. Le Hir, G., Y. Donnadieu, Y. Godderis, R.T. Pierrehumbert, M. Macouin, G.P. Halverson, A. Nedelec, and G. Ramstein. 2008a. The Snowball Earth aftermath: Exploring the limits of continental weathering processes. Earth and Planetary Science Letters https://doi.org/10.1016/j.epsl.2008.11.010.
  47. Le Hir, G., G. Ramstein, Y. Donnadieu, and Y. Goddéris. 2008b. Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology 36:47–50.
  48. Lourens, L.J., A. Sluijs, D. Kroon, J.C. Zachos, E. Thomas, U. Rohl, J. Bowles, and I. Raffi. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1,083–1,087, https://doi.org/10.1038/nature03814.
  49. Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. 
  50. Martin, R.E. 1995. Cyclic and secular variation in microfossil biomineralization: Clues to the biogeochemical evolution of Phanerozoic oceans. Global and Planetary Change 11:1–23. 
  51. Paasche, E. 1962. Coccolith formation. Nature 193:1,094–1,095.
  52. Panchuk, K., A. Ridgwell, and L.R. Kump. 2008. Sedimentary response to the Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36:315–318.
  53. Payne, J.L., D.J. Lehrmann, D. Follett, M. Seibel, L.R. Kump, A. Riccardi, D. Altiner, H. Sano, and J. Wei. 2007. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events. Geological Society of America Bulletin 119:771–784.
  54. Payne, J.L., D.J. Lehrmann, D. Follett, M. Seibel, L.R. Kump, A. Riccardi, D. Altiner, H. Sano, and J. Wei. 2009. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Reply. Geological Society of America Bulletin 121:957–959.
  55. Pruss, S.B., and D.J. Bottjer. 2004. Late Early Triassic microbial reefs of the western United States: A description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211:127–137.
  56. Raffi, I., and B. De Benardi. 2008. Response of calcareous nanofossils to the Paleocene-Eocene Thermal Maximum: Observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge-SW Atlantic). Marine Micropaleontology 69:119–138. 
  57. Raffi, I., J. Backman, and H. Palike. 2005. Changes in calcareous nanofossil assemblages across the Paleocene/Eocene transition from the Paleo-equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 226:93–126. 
  58. Reichow, M.K., A.D. Saunders, R.V. White, M.S. Pringle, A.I. Al’Mukhamedov, A.I. Medvedev, and N.P. Kirda. 2002. 40Ar/39Ar dates from the West Siberian Basin: Siberian Flood Basalt Province doubled. Science 296:1,846–1,849.
  59. Revelle, R., and H. Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27.
  60. Ridgwell, A. 2005. Changes in the mode of carbonate deposition: Implications for Phanerozoic ocean chemistry. Marine Geology 217:339–357.
  61. Ridgwell, A. 2007. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22, PA4102, https://doi.org/10.1029/2006PA001372. 
  62. Ridgwell, A., and J. Hargreaves. 2007. Regulation of atmospheric CO2 by deep-sea sediments in an Earth System Model. Global Biogeochemical Cycles 21, https://doi.org/10.1029/2006GB002764. 
  63. Ridgwell, A., and R.E. Zeebe. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters 234:299–315.
  64. Ridgwell, A.J., M.J. Kennedy, and K. Caldeira. 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302:859–682. 
  65. Ridgwell, A., D.N. Schmidt, C. Turley, C. Brownlee, M.T. Maldonado, P. Tortell, and J.R. Young. 2009. From laboratory manipulations to earth system models: Predicting pelagic calcification and its consequences. Biogeosciences Discuss 6:3,455–3,480.
  66. Riebesell, U., I. Zondervan, B. Rost, R. Tortell, R. Zeebe, and F.M.M. Morel. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367, https://doi.org/10.1038/35030078.
  67. Royer, D.L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 70:5,665–5,675.
  68. Royer, D.L., R.A. Berner, I.P. Montañez, N.J. Tabor, and D.J. Beerling. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today 14(3):4–10.
  69. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371.
  70. Scheiber, C., and R.P. Speijer. 2008. Late Paleocene–early Eocene Tethyan carbonate platform evolution: A response to long- and short-term Paleoclimatic change. Earth Science Reviews 90:71–102.
  71. Sorauf, J.E., and M. Savarese. 1995. A Lower Cambrian coral from South Australia. Palaeontology 38:757–770.
  72. Stanley, G.D., Jr., 2003. The evolution of modern corals and their early history. Earth-Science Reviews 60:195–225.
  73. Svensen, H., S. Planke, A.G. Polozov, N. Schmidbauer, F. Corfu, Y.Y. Podladchikov, and B. Jamtveit. 2008. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277:490–500.
  74. Thierstein, H. 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments. American Geophysical Union Maurice Ewing Series 3:249–274.
  75. Thomas, E. 1998. Biogeography of the later Paleocene benthic foraminiferal extinction. Pp. 214–235 in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. M.-P. Aubry, S.G. Lucas, and W.A. Berggren, eds, Columbia University Press, New York, NY. 
  76. Thomas, E. 2007. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth? P. 1 in Geological Society of America Special Paper, vol. 424. S. Monechi, R. Coccioni, M.R. Rampino, eds, Geological Society of America.
  77. Weissert, H., and E. Erba. 2004. Volcanism, CO2 and paleoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society of London 161:1–8.
  78. Wignall, P.B., S. Kershaw, P.-Y. Collin, and S. Crasquin-Soleau. 2009. Erosional truncation of uppermost Permian shallow- marine carbonates and implications for Permian-Triassic boundary events: Comment. Geological Society of America Bulletin 121:954–956.
  79. Zachos, J.C., U. Röhl, S.A. Schellenberg, A. Sluijs, D.A. Hodell, D.C. Kelly, E. Thomas, M. Nicolo, M. Raffi, and L.J. Lourens. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308:1,611–1,615.
  80. Zeebe, R.E., and D. Wolf-Gladrow. 2001. CO2 in Seawater. Elsevier, Amsterdam, 346 pp.
  81. Zeebe, R.E., J.C. Zachos, and G.R. Dickens. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geoscience 2(8):576–580, https://doi.org/10.1038/ngeo578.
Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.