Oceanography The Official Magazine of
The Oceanography Society
Volume 22 Issue 04

View Issue TOC
Volume 22, No. 4
Pages 160 - 171

OpenAccess

Ocean Acidification at High Latitudes: The Bellwether

Victoria J. Fabry James B. McClintockJeremy T. MathisJacqueline M. Grebmeier
Article Abstract

Owing to anthropogenic-induced acidification, surface waters of the high latitudes are projected to become persistently undersaturated with respect to aragonite as early as mid-century. Seasonal aragonite undersaturation in surface and shallow subsurface waters of some northern polar seas has already been observed. Calcified marine organisms, including thecosomatous pteropods, foraminifers, cold-water corals, sea urchins, molluscs, and coralline algae, make up significant components of the rich communities in high latitudes, and they are thought to be at risk with increasing ocean acidification. Over the next decades, trends of rising temperatures and species invasions coupled with progressive ocean acidification are expected to increasingly influence both planktonic and benthic marine communities of Antarctica and the Arctic. The rate and magnitude of these changes underscore the urgent need for increased efforts in ocean acidity research and monitoring in polar and subpolar seas.

Citation

Fabry, V.J., J.B. McClintock, J.T. Mathis, and J.M. Grebmeier. 2009. Ocean acidification at high latitudes: The bellwether. Oceanography 22(4):160–171, https://doi.org/10.5670/oceanog.2009.105.

References

Armstrong, J.L., J.L. Boldt, A.D. Cross, J.J. Moss, N.D. Davis, K.W. Myers, R.V. Walker, D.A. Beauchamp, and L.J. Haldorson. 2005. Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha. Deep-Sea Research Part II 52:247–265.

Arntz, W.E., T. Brey, and V.A. Gallardo. 1994. Antarctic zoobenthos. Oceanography and Marine Biology 32:251–303.

Aronson, R., S. Thatje, A. Clarke, L.S. Peck, D.B. Blake, C.D. Wilga, and B.A. Seibel. 2007. Climate change and invasibility of the Antarctic benthos. Annual Review of Ecology, Evolution, and Systematics 38:129–154.

Bates, N.R., and J.T. Mathis. 2009. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:2,433–2,459.

Bates, N.R., J.T. Mathis, and L.W. Cooper. 2009. Ocean acidification and biologically induced seasonality of carbonate mineral saturation states in the western Arctic Ocean. Journal of Geophysical Research 114, C11007, doi:10.1029/2008JC004862.

Bates, N.R., S.B. Moran, D.A. Hansell, and J.M. Mathis. 2006. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss? Geophysical Research Letters 33, L23609, doi:10.1029/2006GL027028.

Bluhm, B.A., D. Piepenburg, and K. von Juterzenka. 1998. Distribution, standing stock, growth, mortality and production of Strongylocentrotus pallidus (Echinodermata: Echinoidea) in the northern Barents Sea. Polar Biology 20:325–334.

Carey, A.G., Jr. 1991. Ecology of the North American Arctic continental shelf benthos: A review. Continental Shelf Research 11:865–883.

Clarke, A., and N.M. Johnston. 2003. Antarctic marine benthic diversity. Oceanographic Marine Biology 42:47–114.

Clarke, A., E.J. Murphy, M.P. Meredith, J.C. King, L.S. Peck, D.K.A. Barnes, and R.C. Smith. 2007. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B 362:149–166. 

Coyle, K.O., B. Bluhm, B. Konar, A. Blanchard, and R.C. Highsmith. 2007. Amphipod prey of gray whales in the northern Bering Sea: Comparison of biomass and distribution between the 1980s and 2002–2003. Deep-Sea Research Part II 54:2,906–2,918.

Coyle, K.O., and R.C. Highsmith. 1994. Benthic amphipod community in the northern Bering Sea: Analysis of potential structuring mechanisms. Marine Ecology Progress Series 107:233–244.

Cui, X., J.M. Grebmeier, L.W. Cooper, J.R. Lovvorn, C.A. North, and J.M. Kolts. 2009. Spatial distributions of groundfish in the northern Bering Sea in relation to environmental variation. Marine Ecology Progress Series 19(6):1,596–1,613.

Dayton, P.K., B.J. Mordida, and F. Bacon. 1994. Polar marine communities. American Zoologist 34:90–99.

Dayton, P.K., G.A. Robilliard, R.T. Paine, and L.B. Dayton. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44:105–128.

Ducklow, H.W., K. Baker, D.G. Martinson, L.B. Quetin, R.M. Ross, R.C. Smith, E. Satmmerjohn, M. Vernet, and W. Fraser. 2007. Marine pelagic ecosystems: The West Antarctic Peninsula. Philosophical Transactions of the Royal Society B 362:67–94.

Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Sciences 65:414–432.

Feeley, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47.

Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366.

Grebmeier, J.M., and J.P. Barry. 1991. The influence of oceanographic processes on pelagic-benthic coupling in polar regions: A benthic perspective. Journal of Marine Systems 2:495–518.

Grebmeier, J.M., and J.P. Barry. 2007. Benthic processes in polynyas. Pp. 363–390 in Polynyas: Windows to the World. W.O. Smith Jr. and D.G. Barber, eds, Elsevier Oceanography Series, Volume 74.

Grebmeier, J.M., J.E. Overland, S.E. Moore, E.V. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, J.H. Helle, F.A. McLaughlin, and S.L. McNutt. 2006. A major ecosystem shift in the northern Bering Sea. Science 311:1,461–1,464.

Guinotte, J.M., and V.J. Fabry. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134:320–342, doi:/10.1196/annal.1439.013.

Hofmann, G.E., M.J. O’Donnell, and A.E. Todgham. 2008. Using functional genomics to explore the effects of ocean acidification on calcifying marine organisms. Marine Ecology Progress Series 373:219–225.

Key, R.M.A., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy, and T.-H. Peng. 2004. A global ocean carbon climatology: Results from the Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18, GB4031, doi:10.1029/2004GB002247.

Khatiwala, S., F. Primeau, and T. Hall. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349.

Lovvorn, J.R., J.M. Grebmeier, L.W. Cooper, J.K. Bump, and S.E. Richman. 2009. Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea. Ecological Applications 19(6):1,596–1,613, doi:10.1890/08-1193.1.

McClintock, J.B., R.A. Angus, M.R. McDonald, C.D. Amsler, S.A. Catledge, and Y.K. Vohra. 2009. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Science 21:449–456.

McClintock, J., H. Ducklow, and B. Fraser. 2008. Ecological impacts of climate change on the Antarctic Peninsula. American Scientist 96:302–310.

McDonald, M.R., J.B. McClintock, C.D. Amsler, D. Rittschof, R.A. Angus, B. Orihuela, and K. Lutostanski. 2009. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Marine Ecology Progress Series 385:179−187.

McNeil, B.I., and R.J. Matear. 2008. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 105:18,860–18,864.

Montes-Hugo, M., S.C. Doney, H.W. Ducklow, W. Fraser, D. Martinson, S.E. Stammerjohn, and O. Schofield. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1,470–1,473, doi:10.1126/science.1164533.

Moore, S.E., J.M. Grebmeier, and J.R. Davies. 2003. Gray whale distribution relative to forage habitat in the northern Bering Sea: Current conditions and retrospective summary. Canadian Journal of Zoology 81(4):734–742, doi:10.1139/z03-043.

Moy, A.D., W.R. Howard, S.G. Bray, and T.W. Trull. 2009. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience 2:276–280.

Nelson, R.J., E.C. Carmack, F.A. McLaughlin, and G.A. Cooper. 2009. Penetration of Pacific zooplankton into the western Arctic Ocean tracked with molecular population genetics. Marine Ecology Progress Series 381:129–138.

Orr, J.C., L.G. Anderson, N.R. Bates, L. Bopp, V.J. Fabry, E.P. Jones, and D. Swingedouw. 2006. Arctic Ocean acidification. Eos, Transactions, American Geophysical Union 87(36), Ocean Sciences Meeting Supplement, Abstract OS14B-01. 

Orr, J.C., V.J. Fabry, D. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishinda, F. Jacobs, and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:481–486.

Pearse, J.S., B. McClintock, and I. Bosch. 1991. Reproduction of Antarctic benthic marine invertebrates: Tempos, modes and timing. American Zoologist 31:65–80.

Peck, L.S., and L.Z. Conway. 2000. The myth of metabolic cold adaptation: Oxygen consumption in stenothermal Antarctic bivalve molluscs. Pp. 441–450 in Evolutionary Biology of the Bivalvia. E. Harper, J.D. Taylor, J.A. Crame, eds, Geological Society of London Special Publication no. 177, The Geological Society Publishing House, Bath, UK.

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, and others. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–371, doi:10.1126/science.1097403.

Schiebel, R. 2002. Planktonic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles 16(4), doi:10.1029/2001GB1459.

Sirenko, B.I., and S. Yu Gagaev. 2007. Unusual abundance of macrobenthos and biological invasions in the Chukchi Sea. Russian Journal of Marine Biology 33:355–364.

Steinacher, M., F. Joos, T.L. Frolicher, G.-K. Plattner, and S.C. Doney. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global climate carbon cycle-climate model. Biogeosciences 6:515–533. 

Striegl, R.G., M.M. Dornblaser, G.R. Aiken, W.R. Wickland, and P.A. Raymond. 2007. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resources Research 43, WO2411, doi:10.1029/ 2006WR005201.

Tambutté, S., E. Tambutté, D. Zoccola, N. Caminiti, S. Lotto, A. Moya, D. Allemand, and J. Adkins. 2007. Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Marine Biology 151:71–83.

Thatje S., K. Anger, J.A. Calcagno, G.A. Lovrich, H.-O. Portner, and W.E. Arntz. 2005. Challenging the cold: Crabs reconquer the Antarctic. Ecology 86(3):619–625.

Wood, H.L., J.I. Spicer, and S. Widdicombe. 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B 275:1,767–1,773.

Yamamoto-Kawai, M., F.A. McLaughlin, E.C. Carmack, S. Nishino, and K. Shimada. 2009. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 326(5956):1,098–1,100, doi:10.1126/science.1174190.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.